On Close - to - Convex Function and Univalent Function
Keywords:
Starlike, convex, univalency, regular function, close-to-convex, definitionsAbstract
Let f(z) = z + å¥n=2 anzn and g(z) be regular in the unit disk
E = {z : z < 1}. In this study, a condition under which Re gf ''((zz)) > 0 was establish and the result applied to discuss the univalency of the function f (z) . AMS (MOS) Subject
classification codes 30C45, 30C50.
References
Babalola, K. O. and Opoola, T. O. (2007). A sharp inclusion theorem for a certain class of analytic functions defined by the Salagean derivative, Journal of the Nigerian Mathematical Society, 26, 81-84
MacGregor, T. H. (1963). The radius of convexity for starlike functions of order 12 proc. Amer.
Math. Soc. 14, 71-76. Marx, A. (1932). Untersunhungen uber schlichte Abbildungen. Math. Ann. 107, 40-67
Miller, S. S. and Mocanu P. T. (1978). Second order differential inequalities in the complex plane, Journal of math Analysis and Application, 65, 289-305
Nehari, Z. (1949). The Schwarian derivative and Schlicht functions. Bull. Amer. Math. Soc., 55, 545- 551
Noshiro, K. (1934). On the univalency of certain analytic functions, J. Fac. Sci. Hokkaido Imp. Univ. 2,89-101
Opoola, T. O. and Fadipe-Joseph, O. A. (2009). The Schwarzian derivative and univalent functions theory, Scientia Ser. A, Math. Sci. Vol. 18 57-59
Owa, S . and Obradovic, M. (1986). Certain subclass of univalent functions of type ®, Int. J. Math. and Math. Sci. 9, 347-359
Strohhacker, E. (1993). Beittrage zur Theoreic der Schlichten functionen., Mathe. Z. 37,356-380
Yamagushi, K. (1966). On functions satisfying Reff(z) z g > 0, Proc. Amer. Math. Soc. 17,588-591