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ABSTRACT 
Thermal conduction problems have traditionally been solved using analytical or numerical 

tools. Deterministic numerical tools such as Finite Element and Finite Difference Methods 

have been common.  However these methods require many mathematical and computational 

skills. In the light of this, random vortex method which is probabilistic in nature was applied 

to study the heat conduction in a rectangular slab. Two cases were considered: one with the 

slab boundary held at constant temperature and the other with part of the boundary 

isothermal and part adiabatic. The generated results were then validated using Taylor's series 

approximation test. From the results, the maximum deviation from the Taylor's series tests 

was 0.10 for the purely isothermal boundary slab and 0.07 for slab with partly isothermal and 

partly adiabatic boundary. The results therefore justify the use of random vortex method for 

modeling heat conduction. 

Keywords: Heat Conduction, Simulation, Slab, Probability method, Vortex method 

 

INTRODUCTION 
 

Thermal conduction problems have in time past been solved using analytical or numerical 

tools. Such tools are well documented by Incroprera and deWitt (1990) as well as Welty, 

Wicks, Wilson and Rorrer (1989). Finite Element Method and Finite Difference Method have 

been domineering as reflected in the works of Jing, Antonios, Martin and Joanna (2002) and 

Tasarkuyu and. Akinoglu (2004). Probability methods have also been attempted. For instance 

Haji-Sheikh and Sparrow (1967) used the probability method to solve for temperature 

distribution in a rectangular slab. This approach was further extended by Ogundare (1990) to 

solve for temperature distribution in an arbitrary surface. A more recent probability approach 

was reported by Grigorin (2000). Leveque and Rezzong (1999) carried out thermal studies of 

a superconductivity current limiter using Monte Carlo method. Probability method 

application to Bio-heat transfer was reported by Zhong-Shan and Jing (2002).  

 Vortex method was first introduced as a numerical tool for fluid flow studies by 

Chorin in 1973. Since then, it has grown formidably in its application to fluid flow. Many 

versions of it reported by Liu et al. (2005) include random vortex, core expansion, and 

particle strength exchange, and diffusion velocity techniques. Many application cases 

attempted include the study of hydrodynamic boundary layer in fluids (Lewis, 1991) and 

forced convection over flat plate (Shen and Lu, 1985). A diffusion velocity version of the 

technique was recently applied to study natural diffusion over vertical plate (Ogami, 1999). 
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 By carefully studying the approach adopted in the use of vortex method for solving 

fluid flow problems, it is observed that it can be adopted to solve thermal conduction 

problems. This is attempted in this work. 

 

Description of the Theory of Vortex Method and Application to  

Thermal Conduction 

 
The vorticity equation for a 2-D fluid flow is given as 
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         x =    displacement in horizontal direction(m) 

         y =   displacement in vertical direction (m) 

          ν =  kinematic viscosity (m2/s) 

           ω = vorticity (s-1) 

 u = horizontal component of velocity (m/s) 

            v =  vertical component of  velocity  (m/s) 

             t = time (s) 

     and  
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 When only diffusive terms are present, then the vorticity equation  trims down to    
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The solution for this equation is given  by Batchelor(1967) as 
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           where Γ =  Circulation (m2/s) 

Eqn. (3) resembles the normal distribution probability density function. 

It is on this premise that a random walk model was proposed by Chorin (1973) for simulating 

boundary layer flow. Equation 3 suggests that  a  velocity vortex element i will undergo 

displacement during time  t given as 

       ii Q2θ   ---------------------------------------------------------------------------------------(4) 

         2
1

1ln4
iPi tr   -------------------------------------------------------------------------------(5) 

Then its new position  xi
’  yi’ will be  

xi
’ = xi  +   ri cosθi      -------------------------------------------------------------------------------(7) 

yi
’ = yi  +   ri sinθi           -------------------------------------------------------------------------------(8) 

Q and P are random numbers with values between 0 and 1. 

If therefore elements with known vorticity are created at the wall, they can be diffused into space 

using eqns. (7) and (8).The vortex strength for each element i at the wall is given as  

Γ = uiΔs where  ui is the slip velocity  and  Δs is element size. A typical flow chart for fluid flow 

is shown in Fig. 1. 
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   Create velocity vortices 

 

      Diffuse vortices into space 

 

   Determine the velocity at wall 

 

                          No 

Is there no slip? 

 

           Yes 

Estimate velocity 

 

End process 

Fig. 1:  Algorithm for Vortex Simulation of Diffusion Fluid Flow 

 
 The governing equation for the 2-dimensional unsteady state thermal conduction without 

heat generation is given as: 
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α = thermal diffusivity (m2/s) 

T= temperature (K) 

This equation is similar to the vorticity equation The diffusion is thus simulated by replacing  

kinematic viscosity, ν  with thermal diffusivity term, α. The temperature vortex strength is given 

as ψ =

0
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t  ; y  is in the direction normal to the wall and Δt is the time step. A steady value 

is obtained when ‘ no slip’ of temperature at the wall has been achieved. A comparative flow 

chart is shown in Fig. 2. 

Create  temperature vortices

Diffuse vortices into space

Determine the temperature at wall

No

Estimate  temperature

Yes

Is there no slip?

 
Fig. 2:  Algorithm for Vortex Simulation of Temperature Distribution 

 

End process 
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Simulation Results for Steady State Thermal Conduction Problems 

 Two hypothetical cases were considered in this instance. First a slab with the 

boundary held at constant temperature and with no heat generation was considered. Then a 

slab with part of the boundary at constant temperature and part of it adiabatic was considered.  

The computations were carried out for two dimensional steady state conduction cases. The 

rectangular slabs with appropriate dimensions are shown in Figures 3 and 4. 
 

 

 

Fig. 3:  Square Slab with Isothermal Boundary 
 

 

 

 

      
Fig. 4   Slab with Upper Boundary Insulated 

Case a: Rectangular Slab with Constant Boundary Temperature 

The basic parameters for simulation   

 (i) Slab dimension      = 1m x 1m (ii) Slab material        = mild steel 

The temperatures are specified in dimensionless format, Θ = T/ To, 
,0T

T  

where To is the maximum boundary temperature, T is the temperature of any point in the domain. 

For the case thus considered, Θ takes the value of 1 at all the boundaries. The slab initial 

temperature is set to 0 K. The results of the simulation   for a 10 x 10 grids are presented on Table 

1. 
Table 1 Temperature Solution for Slab with Isothermal Case       

10 1 1 1 1 1 1 1 1 1 1 

9 1 0.96 0.81 0.77 0.76 0.76 0.76 0.81 0.96 1 

8 1 0.7 0.43 0.33 0.32 0.32 0.33 0.43 0.7 1 

7 1 0.56 0.22 0.1 0.08 0.07 0.1 0.22 0.56 1 

6 1 0.53 0.17 0.04 0.01 0.01 0.04 0.17 0.53 1 

5 1 0.53 0.17 0.04 0.01 0.01 0.04 0.17 0.53 1 

4 1 0.56 0.22 0.1 0.07 0.07 0.1 0.22 0.56 1 

3 1 0.7 0.43 0.33 0.31 0.31 0.33 0.43 0.7 1 

2 1 0.95 0.8 0.76 0.76 0.76 0.76 0.81 0.95 1 

1 1 1   1 1 1 1 1 1 1 1 

 1 2 3 4 5 6 7 8 9 10 

                    Grid’s Nomenclature (N-S) 

* Boundary values are in bold format. Other values are for grid nodes in the domain. 

1m,T 

=1 

1m, 

T=1 

y 

x 

Insulated 

Boundary 

Grid’s Nomenclature 

( E-W) 

1m , T 

= 1 

1m,T = 

1 

T 

= 1 
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The finite difference representation of a solution point in a domain is given as Ti = (T1 + T2 

+T3 + T4)/4 for square grids. T1, T2, T3 and T4 are neighbours of Ti.  Ten sample points are 

located at the solution domain and the validity of this relation determined. The sample points 

are shown shaded in Table 1. They are numbered from top to bottom and left to right as on 

Table 2. 
 

Table 2 Sampled Solution Points and Deviation Test Results. 

Solution point Coordinate Sample value Relation value Deviation 

1 5,8 0.32 0.37 .05 

2 3,7 0.22 0.32 .10 

3 9,7 0.56 0.59 .03 

4 6,6 0.01 0.03 .02 

5 3,5 0.17 0.23 .06 

6 4,4 0.1 0.17 .07 

7 6,3 0.31 0.38 .07 

8 8,3 0.43 0.51 .07 

9 9,3 0.70 0.73 .03 

10 3,2 0.8 0.79 0.01 

From the table 2, it could be noticed that the maximum deviation was not more than .10 while the 

deviation values generally lie below 0.07.  

Case b: Slab with Upper Boundary Insulated 

The basic parameters remain the same as in Case a. The results also for a 10 x 10 grids 

(boundary inclusive) are also presented on Table 3. The validation table was also constructed 

as in Case a. This is presented on Table 4. 
 

Table 3: Temperature Distribution in A Slab with Upper Boundary Insulated 

 

10 0.8 0.5 0.19 0.04 0.01 0.01 0.05 0.19 0.5 0.8 

9 1 0.6 0.23 0.05 0.01 0.01 0.05 0.23 0.61 1 

8 1 0.6 0.23 0.05 0.01 0.01 0.05 0.23 0.6 1 

7 1 0.59 0.22 0.05 0.01 0.01 0.05 0.23 0.59 1 

6 1 0.59 0.23 0.05 0.01 0.01 0.05 0.23 0.6 1 

5 1 0.6 0.24 0.07 0.03 0.03 0.07 0.24 0.6 1 

4 1 0.64 0.32 0.16 0.12 0.12 0.16 0.32 0.65 1 

   3 1 0.79 0.54 0.42 0.39 0.39 0.42 0.54 0.79 1 

2    1 0.99 0.86 0.81 0.8 0.8 0.81 0.86 0.99 1 

1 1 1. 1 1 1 1 1 1 1 1 

 1 2   3 4 5 6 7 8 9 10 

                  

Grid’s Nomenclature (N-S) 

* Boundary values are in bold format while sampled results are shown shaded. 

Adiabatic  surface 

Grid’s 

Nomenclature 

(E-W) 
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In this case, the maximum deviation is only 0.07. It is however that noticed those sample 

points with smaller values have larger deviations. In general, the solutions seem comparable 

with the finite difference method. 

 
Table 4: Validation Table for Slab with Upper Boundary Insulated 

 Sample identity Coordinate Sample value Relation value Deviation 

1 4,10 0.04 0.08 0.04 

2 8,10 0.19 0.25 0.06 

3 2,9 0.60 0.58 -0.02 

4 7,8 0.05 0.08 0.03 

5 3,6 0.23 0.27 0.04 

6 6,6 0.01 0.02 0.01 

7 9,5 0.24 0.31 0.07 

8 5,4 0.12 0.18 0.06 

9 2,3 0.79 0.79 0.0 

10 4,2 0.81 0.77 -0.04 

11 8,2 0.86 0.84 -0.02 

 

Comparative Temperature Profiles for Cases ‘a’ and ‘b’ 

The temperature profile surface plots for the slab for the two cases are shown in Figs. 5 and 6 

respectively while the contour plots for the two cases are shown in Figs. 7 and 8. Expectedly, 

the profiles compare sharply since the adiabatic surface permits minimal or no heat transfer.  

 

Fig. 5:  Temperature Trend  in The Isothermal Slab      
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Fig. 6:  Temperature Trend in a Slab with Upper Surface Insulated 
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Fig. 7: Contour Plot  of Temperature in A Slab with Isothermal Boundary 
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Fig. 8:  Contour Plot of Temperature in A Slab with Upper Surface Insulated 
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CONCLUDING REMARK 

Analytical or numerical tools have traditionally been used to solve Thermal conduction 

problems. Deterministic numerical tools such as Finite Element and Finite Difference 

Methods have been common.  However these methods require many mathematical and 

computational skills. From this study, vortex method is established as being viable for 

simulation of thermal conduction problems. In view of this adaptability, it is possible to 

simulate other engineering phenomena with similar governing equations using vortex 

method. 
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