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ABSTRACT

This study on Iterative Approximation of Nonlinear Fredholm Integral
Equations of the Second Kind by Picard's Method considersthe application
of Picard’siteration schemefor the approximation of an operator equation
in Banach space. Using Lipschitz continuity condition and the prescribed
auxiliary scalar function, the location of existence of solution for nonlinear
integral equation Fredholm type and second kind is obtained. The error
estimate provided in the analysisis used to predict the convergence speed
of the Picard’'s scheme. An indication fromthe error estimate shows that
the error will be totally insignificant after eight iterations.
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INTRODUCTION

The existence of solution of anonlinear equation of Fredholm type

b

x(t) = f(s) + /1.[ K(s, t)H(x, (t))dt, s € [a,b] (D
considered earlier by Ezquerro, and Henandez (2004) based on Picard iteration
(Song-bai and Hui-fu, 2001; Rainey, Aghalaya and Ross, 2017)

Xn+1 = G(xn) =Xp — F(xn) (2)

was also studied in this work.

The parameter 4 in Equation (1) isarea number and the kernel k (s, t) isa
continuous function in [a,b] x [a,b] and H:C[a,b] = C[a,b] IS @
differentiable operator in [a, b]. In addition, 4’ is Lipschitz continuousin the
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domain of differentiation. For the purpose of thisstudy, we consider aparticular
case of (1) wherethe Kernel isagreen function

with equation (1) expressed as
b
G(x)(s) =f(s)+ Af K(s, t)H(x, (t))dt. (4)
Let F be an operator such that
F(x)=10 )
where
F:DEX—X

isan operator defined on an open convex domain pof a Banach space X with
valuesin X. It follows from equations (1) and (4) that imply
[FCOI(s) = x(s) = G(x)(s)

and

b
[F(x)](s) =x(s) — f(s) + Af K(s, t)H(x, (t))dt, (6)

with ¥ = ¢[a, b],aspace of continuous functions equipped with a max norm
llll = Srgl[g?lc]lx(SJI JXEX.

The linear operator associated with (5) isthefirst derivativein Fréchet sense
defined for every x € p by theformula

b
[F' (x)y](s) = y(s) — /'lf K(s, t)H(x, (t))dt,s €labl,yeX (7)

We shall employ a Picard type scheme (Yang, and Liu, 2014) to equation 5in
order to obtain the result on the existence of solutions of such equations. We
will rely on the ideas previously considered by Davies (1962), Ahues (2004),
Ezquerro and Henandez (2004) and Guitierrez, Hernandez, and Salanova,
(2004) under different techniques and assumptions. In the next section, we
present the main result of this work with numerical consideration following
afterwards.
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RESULTSAND DISCUSSION
Let
b
M = r[r&aﬁ<j |K (s, t)|dt andx, € D such that||x; — x,|| < 7,
’ a

next, we consider thefollowing lemmas based on the auxiliary scalar function
f(®) = bt? —nt +n? (8)

Lemmal
Assuming that £(t) = 0 has at least a positive real solution with + denoting
the smaller one, then the following relations hold

(in<r

(i) a = AML < 1,L =0

(iil) b =allx; —xgll < 1

(ivyr = L,where w(t) = at.

1—w(r)

Pr oof:
Letf(rj = l:l,tl']er],b:r-2 —nr -|-7;|-2 =0

N’ U

— —_ — 2 = =
(br =mr = —n"andr = 790 = 77705 Thus, (iv) is established.

r
Also,1>1—w(r) > 0,then1 < 5, so thatn < r and(i)holds

1—w(r) <
Again, f(r) = 0,1 — n? = br?,thenn(r —n) = br? and

r—n =ar?thena = rzn < 1since r —n > 0, this establishes(ii).

Asr>0,w(r)=ar<1=an<1=allx; — x|l = b < 1and (iii) holds.
Let  B(xgr)={x€ X:|lx,— x,ll < r}and

Blxpr) ={x e X:|lxy— x,ll = 7}
Then we have the following Lemma.

This Article is Licensed under Creative Common Attribution-NonCommercial 4.0 International 13

https://creativecommons.org/licenses/by-nc/4.0/ | @ OISI®)] |




International Journal of Engineering and Mathematical Intelligence
Volume 6, Number 1, April 2019
ISSN: 2276-8815
Published By
International Centrefor Integrated Development Resear ch, kot Ekpene, Nigeria
I'n collaboration with
Copperstone Univer sity, L uanshya, Zambia.

Lemma?2
If B(x,,7) € D, thenforal x € B(x,,7)
() IF (x) — F'(xo) |l < w(r)

(i) If XnXno1 € B(xo, 1), then [[F(x,)|l < allx, — x,4|I?

Pr oof

i IF @ = F @)l < RIMIH ) = H (xo)
< |AIMLIlx — xl
< ar = w(r).

(i) To prove (ii), we consider the Taylor formula (Rall, 1969).
1

F(xn)s = f [F’ (xn—l + p(xn - xn—l) - F’(xn—l)](xn - xn—l)dp
0

1 b ) )

) f f K (s, O[H () (0) — H (o) (O] (6) = %1 (£)) dtdp
0 a

where

X, (p) = xp—1 + p(x, — x,-1), p € [0,1]. If H’ isLipschitz continuous, then

IF Ge)ll < AMLIIx, = %1117 = allxy, — 201 1%

Theorem 1

Let f(t) = Owith f(t) = bt?> — nt + n? have at least a positive solution and
let r be the smaller one. If B(xy, ) € D, then there exists at least a solution
x* of (4)in B(xy, 7).

Pr oof
From Lemma 1, we have that

[lx; — xoll <71 < r, hence,x; € B(xg,1)
then

Therefore,
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By (iv) of Lemmall,

Mow(r)+ 1) <r.
Thus,
%, € B(xg 7).
By induction,
©)

hence by fixed point theorem,

n—1
e, = xoll < (Z w(r>k> Il = xo

k=0

(S e~

k=0

Con Uently, Xy € B‘(_’x ;r'j foral n = 0.

ILx% %wliﬂ"lﬁcg)grb[”ﬂl%xﬂx *abll <@l + 1
Next, we show that {x_} s a Cauchy sequence.From (9), Lemma 1 and the
fixed-point theorem, we have

”xn+m - xn” < ”xn+m - xn+m—1” + ”xn+m—1 - xn+m—2|| + -+ ”xn - xn—l”

Since w(r) = ar < 1, thenumerator 1 — w(r)™ < 1 and

w(r)"

s = 20l < 7= e = xall

Setting lim x,, = x*, we have

m—oo

=2 <=2 = sl
n — 1 _0)(7') 1 ol
Finaly, for n = 0,
—r’ =
1—w(r)

IF(x, )]l = 0. Hence, x*isa

lIx* = xoll <

Therefore, x* € B(x,,r) ad F(x*) = lim
solution of F(x) = 0.

71 —*oo
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Applications

The above theoretical result isillustrated with the following example.
Consider the second kind nonlinear integral equation of Fredholm type

1
x(s) = s+ Af K(s,t)x(t)?dt,s € [0,1] (10)
0

Let x = C[0,1] be a space of continuous functions equipped with the max
norm and K (s, t) is the Green function (3). The operator F associated with
(10) isgiven by

F(x)(s) = x(s) —s — A fo 11((5, H)x(t)2dt
and

F' ()y(s) = y(s) — 24 fo 1K(s, Hx(®)y(t)dt,s € [0,1],y € X.
Forx, =0,lIF(x)ll=p=1andb = a.

, , 1A]
IF () = F'Geo)ll < = Il = o

. |2 |l
Choosing a = T then w(r) = Tr
and the equation £(+) with £ in (8) isgiven by
Il
S -t+1=0 (11)

By choosing 4 = 3 then the iteration (2) starting from x,(s) = 0 hasafixed
point in the ball B(x,, 4 — 2v/2).

Thefirst threeiterations are

x,(5)==s

x,(s) = 1,041667s — 0.041667s*

The approximate error after three iterations can be obtained from theorem 1
as
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1 3
(g) (1.171572)3
=3.68x 1073,

1— (%) (1.171572)

An indication from the error estimate shows that the error will be totally
insignificant after eight iterations.

CONCLUSION

Theanaysisof Picard’ smethod for the solution of nonlinear Fredholm integral
eguations of the second kind was studied in this study. The existence of the
solution based on fixed-point theorem was demonstrated. The analysisincluded
abound for error in the procedure, which gives information on convergence
and computation time of the iterative process.
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