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ABSTRACT 

 
The focus of this work is on the application of a family branching process in 

Relation to Poisson, Logarithmic and Negative Binomial Distribution. The data 

used was obtained by personal interview and analyzed using probability generating 

function in order to obtain the fitted probability model of the family. The model 

obtained is found to be the probability generating function of negative binomial 

distribution. This probability model reveals that the number of descendants in every 

generation increases with the increase of the number of generation. This method 

employed in this work is suitable for the model of other systems with similar 

dynamics. 

 

Keywords: branching process, Poisson process, family, probability generating 

function. 

 

INTRODUCTION 

 

Bienayme-Galton Watson Branching process with the nomenclature of population 

dynamics, is a discrete-time stochastic process that describes the evolution of a 

population in which each individual independently of the others gives rise to a 

random number of offspring (in accordance with a common reproduction law), and 

then dies (Miguel Gonzalez and Ines Ma del Puerto, 2010) or is not considered in 

the following counts. We shall give its formal definition and establish some 

interesting properties. Let ,...}1,0j...;,1,0n:{Xnj  be non-negative integer 

valued independent and identically distributed (i.i.d.) random variables with 

probability distribution 0kk }{P  i.e P(X01 = k) = Pk,k > 0. The BGWP is a stochastic 

process, 0nn }{Z  , defined recursively as follows: 
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1n,XZ,NZ nj
Z

1j1n0
n     

    (1) 

Where nj
0

1j X  is defined to be zero. Thus, njX  represents the number of offspring 

produced by the jth individual in the nth generation, and Zn represents the number of 

individuals in the nth generation. We refer to 0kk }{P   as the offspring distribution 

or law, with Pk  being interpreted as the probability that an individual has k offspring, 

in the simplest case to determine the fitted probability model of the family as a 

population that does not vary from individual to individual.  

In species with sexual reproduction, the population sizes depend on the 

formation of couples. In many populations, mating is an important factor that cannot 

be neglected. Bisexual branching processes take this into account explicitly. In 

general, these processes start with N couples. Each couple has random numbers of 

female and male offspring which form new couples in accordance with a 

deterministic or stochastic function, and so on (Haccou, Jagers and Vatutin, 2005). 

The aim of this study is to obtain the fitted probability model of occurrence 

of birth in a family. Therefore the objectives of this study are as follows: 

i. To determine the average number of offspring in every generation 

ii. To obtain a model that will be used in predicting number of offspring at 

higher generations 

iii. To obtain the probability of extinction of the derived  model 

 

METHOD 

The method adapted in this paper is primary method of data collection by personal 

interview and tool used for data analysis was probability generating function. 
 

Notations and Terminologies 

Pj is the individual probability of producing j offspring in the family 

i. Xn is the generation size 

ii. G(S) = Probability generating function. 

iii. j number of offspring that produce another offspring 
 

Procedure for Obtaining the Fitted Probability Model Using Probability 

Generating Function 

Assume that an individual has a known probability of producing a number of 

descendants at a given time and produce no other descendant. In turn these 

descendants each produce further descendant at the next subsequent time with the 

same probability. This process creates a successive generation (Bashir, 2015). 
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At each step there is probability 𝑃𝑗 that any individual create 𝑗 descendants, who is 

assumed to be the same for every individual at every generation. Let Xn be a discrete 

random variable representing the population size of the nth  generation taking values 

in the non-negative integers 0, 1, 2, 3, 4, …), then the probability generating 

function of the descendant numbers Xn is define as: 

 

j
j0j

j SP)S(E)S(G 
   

 

With )X(pgf)S(G 01         (2) 

 

and )X(pgf)S(G 22  , which is the sum of X1 random variables (the descendants of 

X0), which in turn we denoted by independent random variables say, Y1, Y2, …, Yx1. 

So that, X2 = Y1 + Y2 + … + Yx1. 

Let Pj = P(Yk = j);  j = 0, 1, 2 … 

Pr = P(X1 = r) and Pn = P(X2 = n) 

 

Using partition law 
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Multiply both side by S
n
 and sum over n. i.e 
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From equation (3) above, 

 2X2x

1

2
0n SS

rX

nX
P 




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








  

Where 












rX

nX
P

1

2  is the conditional probability function for 
1

2

X

X
 

   1x21 Y...YY2X SS


  

   1X321 YY.YY2X S....SS.SES   

       1X321 YYYY
SE....SESESE  

Since, every individual in the process reproduced independently. 

          SG....SG.SG.SGS 2X   

    r2X SGS   

Substitute back into equation (2) 

       rr0r
r

2 SGPSGESG 
  

        SGGSGPSG
r

r0r2  
       (4) 

Equation (4) gives the probability generating function of second generation. The 

probability generating function of third generation using the same procedure is: 

    rr0r3 )SG(GPSG 
 . 

In general, probability generating function of nth generation is given as: 

    ))S(G(G))S(G(GPSG 1n
r

1nr0rn 

   

   )...))S(G(...G(GSGn         (5) 
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GENERATION 0        X0 + 1  

     

     

GENERATION 1  X1 = 19 

 

 

GENERATION 2        X2 = 60 

Figure 1: Diagrammatic Representation of Branching Process and Data Presentation 

 

Let the probability generating function of the nth generation be 

 

    j
j0j

j
n SPSSG 

  

 

which is the probability generating function of producing j offspring in the next 

generation. 

To find the fitted probability model for the nth generation we need to observe the 

behaviour of the branching system (assumption of branching process). 

1 Giving birth in every woman occurs with time. 

2 Every individual in the same generation have equal probability of producing 

number of offspring. 

3 The occurrences are independent, that is given birth of a woman do not affect 

another woman. 

These behaviours (assumptions) are exactly the same with the theoretical form of 

Poisson assumption which are as follows 

1 An event occurs from time to time. 

2    Events in a time interval have certain probability of occurrence. 

3    The occurrences are independent. 

Since, the behaviours of branching process are the same with Poisson assumption; 

we consider giving birth of individual as occurrences of event in Poisson process 

denoted by N(t). 
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Let N(t) be the number of events that have occurred in the interval (0, t). Let event A 

denote the occurrence of exactly one event in the interval (t, t + h). Similarly, let B 

and C respectively denote the occurrence of none and more than one event in the 

interval (t, t + h) (Joyce, 2014). 

 

Also let 

P(A = occurrence of one event) = p(h) 

P(B = no event) = q(h) 

   heventonethanmoreCP   

 

Now, N(t) form a Poisson process with the following four conditions  

1   N(0) = 0 

 

2 Events occurring in non-overlapping interval of time are mutually 

independence. 

 

3 The probabilities p(h), q(h) and  h depend only on the length h of time 

interval and not on the time origin t. 

 

4 For sufficiently small values of h, we can write for positive constant   

      hhh,t,tervalinttheineventonePhp 0  

      hhh,t,tervalinttheineventnoPhq 01   

      hh,t,tervalinttheineventonethanmorePh 0  

Where 
 

0
0

0 
h

h
limh   

Let Pn(t) = P[N(t) = n] 

From condition 1 

    000100  n;Pand,P n  
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Now consider two successive non-overlapping interval    t,tandt,0   

To compute the probability that n events occur in the interval  t,0  given by 

     tPt,ineventsnP n0   

by total probability theorem 

  t,ineventsnP 0  
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lim
ℎ→0

𝑃𝑛(𝑡 + ℎ)

ℎ
−
𝑃𝑛(𝑡)

ℎ
= −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡) + lim

ℎ→0

0(ℎ)

ℎ
 

 
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1

 

     tPtPtP nn
'
n 1        (6) 

multiply both side of equation (6) by 
yte , we have 
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t
n
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let     t
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Using the boundary conditions that   10 tQ'
 and   0tQ'

n  

From equation (8) 

When n = 1 

  tQ'
1   

Integrating both side with respect to t 

  dtdttQ'
  1  

  ttQ 1  
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When n = 2 
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This shows that considering birth of offspring in branching process as occurrence of 

event has a Poisson probability density function. Now at steady state and when n = j. 
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The probability generating function of the process is  
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From Taylor series expansion of 
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In a process where branching occurs from a Poisson process to logarithmic 

distribution, the most elegant way to determine the resulting distribution is by use of 

probability generating function. (Christian Walck, 2007). 
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The probability generating function of logarithmic distribution is 

 
 
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Where 
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For branching process in n-steps 

 

G(S) = G1(G2(…Gn-1(Gn(S))…)) 

 

The resulting probability model is obtained by nesting the logarithmic probability 

generating function in Poisson probability generating function. 

 

G(S) = Gp(Gl(S)) 

 

     11  sqlntexpSG  

    tsqlntexpSG  1  

    tt
expsqlnexpSG 

 1  

        tt
expsqSG 

 1   

    let jt   

 

From this we have 
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         qlnjj
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
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The resulting model is recognized as probability generating function of negative 

binomial distribution with parameter j and p. 

 

 

RESULTS AND DISCUSSION 

 

 

In generation 1: 

 

j = 10 

 

X1 = 19 
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Substituting in equation (4) 
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The model can also be used in predicting number of offspring at higher generation, 

the expected number of offspring in generation n can be obtain using the derived 

model below. 
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Applying equation 2 to equation 9 
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From the equation above when j = 0, G(S) = 1. This means the probability of 

extinction is 1 if there are 0 offspring in any generation.  
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The resulting model obtained is recognized as probability generating function of 

negative binomial distribution with parameter j and p. This shows that when birth 

pattern in branching process is considered as an occurrence of event in Poisson 

process, the result leads to logarithmic distribution producing a negative binomial 

probability generating function. The result gives a description of the branching 

system of a family as a negative binomial distribution. 

 

 
Figure 2: Graphical Representation of the Generation Size  

 

CONCLUSION 

 

A Probability Model of a Family Using Branching Process in Relation to Poisson, 

Logarithmic and Negative Binomial Distribution was designed. The resulting model 

is recognized as probability generating function of negative binomial distribution 

with parameter j and p. The model can also be used in predicting number of 

offspring at higher generation, the expected number of offspring in generation n can 

be obtain using the derived model. From the data collected X0 = 1, X1 = 19 and X2 = 

60 are the population sizes of generation 0, generation 1 and generation 2 

respectively. The expected generation sizes obtained are: X0 = 1, X1 = 9 and X2 = 81. 

The result shows that the higher the generation size the larger the population size. 

The population size of Xn generation agrees with the derived model below. 
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showing the probability of extinction of the family is 1 when the generation size is 

zero. Hence, we conclude that the resulting probability model of branching system 

of the family is negative binomial or branching system of the family follows 

negative binomial distribution. 
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