| mplementation of Hungarian ProcedureUsing C++
(Casestudy of Dangoteflour mills)

Ekpenyong, A.D.
Madu, |. M.
Usman, S.

Computer Science Department
Federal Polytechnic, Bauchi, Nigeria

ABSTRACT

The Hungarian method is a combinatorial optimization algorithm which
solves the assignment problem in polynomial time. It is also known as
Kuhn—Munkres algorithm or Munkres assignment. The implementation
of Hungarian procedure requires a nonnegative nx n matrix, where the
element in the i-th row and j-th column represents the cost of assigning
thej-th job to thei-th worker. We have to find an assignment of the jobsto
the workers that have minimum cost. This project takes input from user
and then performs the job of scheduling based on the best available
options provided. It was observed that the algorithm works even when
the minimum values in two or more rows are in the same column, when
two or more of the rows contain the same values in the same order. Or
even when all the values are the same (although the result is not very
interesting). Munkres Assignment Algorithm is not exponential run time
or intractable. Optimality is guaranteed in Munkres Assignment
Algorithm. It takes fraction of seconds to performit computation in most
Cases.

Keywords:

INTRODUCTION
Most companiesand factoriestoday, arefaced with the problem of job assgnment,
that is, wherethe company triesto assign job to itspersonnel in the best way such
that thereiscost reduction and profit maximization. Thisproblemiscalled an
assgnment problem. Assignment problemisoneof thefundamental combinatorial
optimization problemsin the branch of optimization or operationsresearchin
mathemétics It congssof finding amaximumwe ght metchinginawei ghted bipartite
graph. Theassignment problemisaspecia caseof the minimum cost flow problem.
Whileitispossibleto solveany of these problemsusing thesmplex agorithm, each
specialization hasmore efficient agorithm designed to take advantage of itsspecia
sructure (Ozigbo, 2000). Itisclear that many management decisonsareessentialy
resource alocation and there exists several techniquesthat handlethis problem
such astransportation model and assignment technique. Thesetechniqueshelp
management in dealing with alocation problems; aprocedure concerned withthe
utilization of limited resourcesto itsbest advantage. The Hungarian procedureis

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 14

| SSN: 2276-8815

problem. This procedure deal swith effective all ocation of resourcesto aknown
activity with the objective of meeting designed setsof goals. In each casewemay
be maximizing profitsor minimizing cost. Allocation problemsare concerned with
theutilization of limited resourcesto best advantage. Inthisressarchwork, Hungarian
procedure will be useto solve the company (Dangote flour mills) assignment
problem. Assumethat we have N workersand N jobsthat should be done. For
each pair (worker, job) we know salary that should be paid to worker for himto
perform thejob. Our goal isto completeall jobs minimizing total inputs, while
assigning eechworker to exactly onejob and viceversa (and onejob to oneworker).
Theproblem hereisto assign thejobsto the machines such that thetotal cost of
productionisminimized, whichin turn resolvesthe problem of delay incompletion
of task and the problem of job scheduling. The machine here may not necessarily
beaphys ca machineit might be humansin someinstance. C++waschosen because
of itsflexibility etc. (John, 2000). Theobjectivesof thisresearch are:
i To havean efficient and more effective way of assigning jobsto machines
using acomputerized approach.
i To promotejob specidizationin afirm and timely completion of thejobs.
i To understand when an assignment technique shoul d be used in companies
alocation problems.
v To know how to deal with unequal machinesand job problemsrisingin
management production processes.

METHOD

The primary means of data capturefor thisresearch work isthe use of amatrix
defined within themain program, which holdsthe cost of theindividua assgnment
assigning onetask to one distinct personnel. These costs of assignment arethe
valuesthat areto be entered by the user (using the program) from theinput screen
at the start of the program. Output Design interface specifies the result of the
computed dgorithms. Theoutput formwill display theordered pair of theassgnmert,
thetotal cost of assignment, the dimension used in the computation and thetime
that elapsed inthe course of carrying out the scheduling.

Input Designisthefirst screen shot the user (operator) using the program
will see. Theform displaysinformation, requesting for the user to specify thesize of
the matrix followed by the number of rowsand columns, after whichtheuser is
requested to enter the cost of theindividual assgnment supply inrow order sothat
the program can then computeand display thefina scheduleformat and the cost of
assigning thetota job. Mathematical M odel shelpinsmplifying the complexity of
the assignment problem (Burkard, 2009). Given N workersand N tasks,annxm
matrix containing the cost of assigning each worker to atask. First theproblemis
writtenintheform of amatrix asgiven below

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 15

| SSN: 2276-8815

Al A2 A3 A4

B1 B2 B3 B4
C1 Cc2 C3 C4
D1 D2 D3 D4

WhereA, B, Cand D aretheworkerswho haveto performtasks1, 2, 3,4.A1,
A2, A3, A4 denote the penalties incurred when worker “A” doestask 1,2,3,4
respectively. Thesameholdstruefor theother symbolsaswell. Thematrix issquare
sothat each worker can perform only onetask. TheN x M matrix consist of non-
negative e ement whereith-row and jth-column represent the cost of assigning the
jthjobtoithworker. Thealgorithmiseasier to describeif weformulatethe problem
using abipartitegraph such that G= (S T, E) with nworker vertice(s) and njobs
vertices(T), each edge hasanon-negative cost C (i, j).
Ify@i)+y()d C(i,j) foreachi£ S JET
Thevaueof potentid yis

2 y(v)

vESUT.
It can be seen that the cost of each perfect matchingisat |east the value of each
potentials. The Hungarian method finds aperfect matching and apotential with
equal cost vauewhich provesthe optimality of both the assignment. An edgeij is
caledatight for apotentia yif y (i) +y () = C(i, j). Resulting to
{Cij} Nx M where Cij isthe cost of worker i to performjobj.
{Xij} Nx M binary matrix whereXij = 1if and only if ithworker isassigned tojth
job
“xij = oneworker to onejob
“ xij = onejob to oneworker assign
" Cij Xij min = total cost of assignment

Algorithm

Sep 0: Createan nx mmatrix such that each d ement representsthe cost of assgning
one of nworker to one of m jobs. Rotate the matrix so that there are at
least asmany columnsasrowsand let k=min (n, m).

Step 1. For each row of the matrix find the smallest element and subtract it from
every elementinitsrow gotostep 2.

Step 2: Find azerointheresulting matrix. If thereisno starred zero initsrow or
column, star Z. Repesat for each element inthematrix goto step 3.

Step 3: Cover each column containing astarred zero. If k columnsare covered,
the starred zeros describe acompl ete set of unique assignments. Inthis
casegoto DONE, otherwisego to step 4.

Step 4: Find anon-covered zero and primeit. If thereisno starred zerointherow
containing thisprimegoto step 5. Otherwise, cover thisrow and uncover
the column containing the starred zero. Continuein thismanner until there
areno uncovered zero left, savethe smallest uncovered valueand go to
step 6

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 16

| SSN: 2276-8815

Step 5: Start at the primed zero found in step 4. Star thiszero, eraseitsprime, and
check for astarred zeroin current column. If thereisone, eraseitsstar and
gototheprimed zeroinitsrow. Continue until wearrive at aprimed zero
with no starred zeroinitscolumn.

Uncover every row and columninthe matrix and return to step 3.

Step 6: Subtract the smallest uncovered valuefound in step 4 from all uncovered
valuesand addit to all valueswhoserow AND column are covered.

Returnto step 4.

Done

Assignment pairsareindicated by the position of the starred zerosin the cost matrix.

If C(ij) isastarred zero, then the element associated withrow i isassigned tothe

element associated with columnj.

Description of theProgram
Thisresearch work basically performsthefunction of scheduling jobstoits best
available options based on the cost of assignment entered by the user (operator).
Inthe course of supply of the assignment it should be put into considerationsthat
the number of jobsmust equa the number of personne . The program worksbased
onthecost of assignments entered to computethetotal cost of assignment aswell
asadisplay of thefinal job scheduling on the output form for the user to see. The
major stepsinthe operation of thissystem are:

i Sizeof work (i.e. therow and columns must be specified).

i Cost of assignment entered in arow wiseorder.

i Cost of assignment computed.

v Theordered pair of assignment displayed.

v Thetimethat dgpsedinthecourseof carrying out of thecomputation.
For exampletaking these set of dataas samplefor the cost of production, such
that, thereare 7 jobsto be performed by 7 personnel and the table below isthe
cost of assigning adistinct job to apersonnel.

Jobs
Personnel Cleaning Conditioning Breaking Scalping Middling Purifying Packaging

A 5 10 11 45 21 19 7
B 32 30 25 14 15 45 6
C 12 20 18 45 14 33 5
D 22 11 18 16 16 21 4
E 12 22 5 20 20 22 3
F 18 21 3 5 1 5 2
G 14 11 6 4 3 6 1

When these va ueswas captured by the program thefollowing result was gotten as
the ordered pair of the assignment (i.e. the personnel and the assigned job to be
perform by thispersonnel), thetotal cost of assignment, dimension of work (size)
andthetimethat el apsed astheduration in carrying out of the computationsby the
program.

Dimension(7,7)

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 17

| SSN: 2276-8815

Timedapsed: 0.028ns.

TheOrdered pair displayed by the program:

(0,0),(2,3),(2,6),(3,1),(4,2),(5,4),(6,5), meaning:
Personnel A have been scheduled to clean thewhest to removeforeign materials.
Personnd B have been scheduled to scalp thewhest i.e. in charge of shifting away
theloosewhest.
Personnd C have been scheduled to packagetheflour into bagsready for market.
Personnel D have been scheduled to condition thewheat to facilitate separation of
the bran from the endosperm.
Personnel E have been scheduled to br eak thewhest into smaller particles.
Personnd F have been scheduled to middsof thewhesat handlesthemedium granular
particlesof endosperm.
Personnd G have been scheduled to pur ify thewhesat into flour. Resulted to 47units
asthetotal cost of production

CONCLUSION

Insummary, Hungarian procedureisaform of trangportation modd whichinturnis
an assgnment problemthat dedl swith assigning of jobstoworkerssoastominimize
(or maximize) thetotal cost of production. Since each worker can perform only
onejob and each job can be assigned to only oneworker the assignmentscongtitute
anindependent set of agiven matrix (Terry, 2002). Inthe course of thisresearch
work inrelationto thisa gorithm wefound out that the Hungarian procedure can be
solved using different a gorithmssuch asbruteforceagorithm, koning graph theory,
bipartite graph model setc. We recommend that in the course of subsequent studies
these algorithms should be understood to give awider range of diversity inthe
courseof implementation of the Hungarian procedure and to get familiarized with
different solution so as to further confirm the result computed. The Munkres
assignment agorithmisnot limited to squarematrix aloneit canbeimplemented as
asparsematrix, but one need to ensurethat the correct (optimal) assgnment pairs
(Munkres 1957) arein correlation, and (of course) any pairwise assignment
application. Munkres can be extended to rectangular arrays (i.e. morejobsthan
workers, or moreworkersthan jobs).

REFERENCES

Burkard R., Dell’Amico M. and Martello S. (2009), Assignment Problem. Philadel phia:
SIAM (PA)

John R. (2000). Theory and problem of programming with C++ (second edition). The
McGraw hill companies, USA.

Munkres J. (1957). Algorithm for the assignment and transportation model. Journal of the
society for industrial and applied mathematics, 5(1):32-38.

Ozigbo N. (2000). Quantitative analysis for management decisions (first edition). Enugu:
Precision Printersand Publishers, Nigeria.

Terry L. (2002), quantitative techniques (sixth edition). Padstow Cornwall: T. J. International ,

4%%}9%%—- j r

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 18

| SSN: 2276-8815

Source code listing

/*

* main.cpp
* Hungaraian Assignment Algorithm

*/
#include
#include
#include
#include
#include
#include
#include

<vector>
<iostream>
<iomanip>
“time.h”
“munkres.h”
<algorithm>
<stdio.h>

#include <stdlib.h>
//max and min sizes of the sample matrix
const int min_size = 500;
const int max_size = 500;
//the maximum and minimum weights that can be assigned to a single edge
const int min_weight = 20;
const int max_weight = 50;
//to show the sample set
const bool display_matrix = true;
//for building pseudo-random test cases
//input custom minimum and maximum values for both the size of the matrix
//and the weights contained in it
void test_generator(std::vector< std::vector<int> > &x)
int num_rows;
std::cout << “Enter the size of the Matrix” << std::endl;
std::cin >> num_rows;
int num_columns = num_rows;
//cout << num_rows <<
//resize x to match size
//all values are initialized to -1
x.resize(num_columns, std::vector <int> (num_rows, -1));
//load weights with random(ish) values between min_weight and wax_weight inclusive
for (int i =0; i < num_columns; i++)

{
for (intj = 0; j < num_rows; j++)
{
printf(“enter row %d column %d\n”,i,j);
std::cin>>x[i][j];
}
}

if (display_matrix)

//output the starting vector
for (int i =0; i < num_columns; i++)

{
for (int j = 0; j < num_rows; j++)
{
std::cerr << std::setw(3);
std::cerr << x[i][j] << “ “;
}
std::cerr << std::endl;
}

}

//for performance testing
std::cerr << “Dimensions: (“ << num_rows << “, “
std::cout << “Go Time!” << std::endl;

<< num_columns << “)” << std::endl;

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

}

int main (int argc, char * const argv[]) {

}
/*

//The vector of vectors of integers that we need to pass in
std::vector< std::vector<int> > x ;

//Build a test case

test_generator(x);

//start clock

clock_t start = clock();

//actual class instantiation and function calls
munkres test;

test.set_diag(false);

test.load_weights(x);

int cost = 0;

int num_rows = std::min(x.size(), x[0].size());
printf(“min result=%d\n”,num_rows);

int num_columns = std::max(x.size(), x[0].size());
printf(“max result=%d\n”,num_rows);

ordered_pair *p = new ordered_pair[num_rows];

cost = test.assign(p);

//output size of the matrix and list of matched vertices
std::cerr << “The ordered pairs are \n”;

for (inti=0; i < num_rows; i++)

{

std::cerr << “(“ << pl[i]l.row << “, “ << pl[i].col << “)” << std::endl;

}

std::cerr << “The total cost of this assignment is “ << cost << std::endl;

std::cerr << “Dimensions: (“ << num_rows << “, “ << num_columns << << std::endl;
std::cerr << “Time elapsed:” << ((double)clock() - start) / CLOCKS_PER_SEC << std::endl;
delete p;

char c;

std::cin >> ¢;

return 0;

u)n

* munkres.cpp

*

*/

Hungaraian Assignment Algorithm

#include “munkres.h”
/*! Constructor */
munkres::munkres(void)

{

}

//default to not showing steps
diag_on = false;

/*! Destructor */
munkres::¥munkres(void)

{
}

/*! Load wieght_array from a vector of vectors of integers. */
void munkres::load_weights(std::vector< std::vector<int> > x)

{

//get the row and column sizes of the vector passed in
int a = x.size(), b = x[0].size();

//default vectors for pupoulating the matrices

//these are needed because you need a default object when calling vector::resize()
std::vector<int> ivector;

cell default_cell;

std::vector<cell> default_vector;

//We need at least as many columns as there are rows
//If we currently have more rows than columns

if (@a>b)

{

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

20

}

//set matrix sizes
num_rows = b;
num_columns = a;
ivector.resize(num_columns, -1);
weight_array.resize(num_rows, ivector);
default_vector.resize(num_columns, default_cell);
cell_array.resize(num_rows, default_vector);
//populate weight_array and cell_array with the weights from x
for (inti=0; i < num_rows; i++)
{
for (int j = 0; j < num_columns; j++)
{
weight_array[i][j] = x[jI[i];
cell_array[i][jl.weight = x[j][il;

}

//if the dimensions are correct
else
{
//set matrix sizes
num_rows = a;
num_columns = b;
ivector.resize(num_columns, -1);
weight_array.resize(num_rows, ivector);
default_vector.resize(num_columns, default_cell);
cell_array.resize(num_rows, default_vector);
//populate weight_array and cell_array with the weights from x
for (inti=0; i< num_rows; i++)
{
for (int j = 0; j < num_columns; j++)
{
weight_array[i][j] = x[i][jl;
cell_array[i][jl.weight = x[i][j];

}

//resize our covered and starred vectors
row_starred.resize(num_rows, false);
row_cov.resize(num_rows, false);
column_starred.resize(num_columns, false);
column_cov.resize(num_columns, false);
if (diag_on)
{

diagnostic(1);
}

//function to copy weight values from cell_array to weight_array
int munkres::assign(ordered_pair *matching)

{

//total cost of the matching
int total_cost = 0O;

//did we find a matching?
bool matching_found = false;
//For Checking

if (diag_on)

diagnostic(1);
}
//try to find a matching

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

21

matching_found = find_a_matching();
//For Checking
if (diag_on)
{
diagnostic(1);
}
//total up the weights from matched vertices
for (int i =0; i < num_rows; i++)

{
for (int j = 0; j < num_columns; j++)
{
if (cell_arrayli][j].starred)
{
matching[i].col =j;
matchingli].row = i;
total_cost += weight_array[i][j];
}
}
}

return total_cost;
}
//functions to check if there is a star or prime in the
//current row or column
int munkres::find_star_row(int r)
{
//check row
for (inti = 0; i < num_columns; i++)
{
//If a starred value is found in current row return true
if (cell_array[r][i].starred == true)
{
row_starred[r] = true;
column_starred[i] = true;
return i;
}
}
//If no stars are found return -1
return -1;
}
int munkres::find_star_column(int c)
{
//check column
for (int i =0; i < num_rows; i++)
{
//If a starred value is found in current column return true
if (cell_array[i][c].starred == true)
{
column_starred|[c] = true;
row_starred[i] = true;
return i;
}
}
//If no stars are found return -1
return -1;
}
int munkres::find_prime_row(int r)
{
//check row
for (int i = 0; i < num_columns; i++)
{
//If a primed value is found in current row return
//its psoition

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

22

if (cell_array[r][i].primed == true)
{
return i;
}
}

//1f no primes are found return -1
return -1;
}
int munkres::find_prime_column(int c)
{
//check column
for (inti=0; i < num_rows; i++)
{
//If a primed value is found in current column return
//its position
if (cell_array[i][c].primed == true)
{
return i;
}
}

//1f no primes are found return -1
return -1;
}
//The function that will call each of step of Munkres’ algorithm in turn
//We’re using this since multiple functions use the algorithm
bool munkres::find_a_matching(void)

{
stepl();
step2();
return step3();
}
//Function definitions for the steps of Munkres’ algorithm
/!
Step 1.

We skip step 0 as the matrix is already formed
Here we subtract the smallest element in each row from the other values in that row
*/
void munkres::stepl(void)
{
//variable to keep track of the smallest value in each row
int smallest = 0;
//iterate through rows
for (inti =0; i < num_rows; i++)
{
//set smallest = first element in the current row
while (smallest == 0){
smallest = cell_array[i][0].weight;
//if the first element is O then increase the row
if (smallest == 0)

{
if (i < num_rows-1)
i++;
else
break;
}

}
//iterate through each value in current row and find the smallest value
for (int j = 1; j < num_columns; j++)
{
//if the current value is a zero, then set smallest to zero
//and stop searching for a smaller value

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

if (cell_arrayl[i][j].weight == 0)

{
smallest = 0;
//break out of the for loop
j = num_columns;

}

//if the current value is smaller than smallest, then
//set smallest == to current value
else if (cell_array[i][j].weight < smallest)
{
smallest = cell_array[i][j].weight;
}
}

//if the smallest == 0 then we don’t need to subtract anything
//otherwise we need to subtract smallest from everything in the current row
if (smallest = 0)

{
//iterate through the values of current row and subtract
//smallest from evrything
for (int j = 0; j < num_columns; j++)
{
cell_array[i][j].weight -= smallest;
}
}

//reset smallest for next iteration
smallest = 0;

}
if (diag_on)
std::cerr << “Step 1” << std::endl;
diagnostic(2);
}
}
/!
Step 2.

Star zeroes that don’t have stars (upon thars :P) in the
same row or column
*/
void munkres::step2(void)
{
//iterate through rows
for (int i =0; i < num_rows; i++)
{
//iterate through columns
for (int j = 0; j < num_columns; j++)
{
//if the current index is equal to O
if (cell_array[i][j].weight == 0)
{
//check for stars in current row
if (Irow_starred[i])
{
//if not try to find one
find_star_row(i);
}
//check for stars in current column
if (Icolumn_starredl[j])
{

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

24

//if not try to find one

find_star_column(j);
}
//if no stars in column or row then star current index
if (Irow_starred[i] && !column_starred[j])

{
//star index
cell_array[i][j].starred = true;
//mark row as having a star
row_starred[i] = true;
//mark column as having a star
column_starred[j] = true;
}
}
}
}
if (diag_on)
{
std::cerr << “Step 2” << std::endl;
diagnostic(3);
}
}
/!
Step 3.

cover all columns with starred zeros

if (num_rows) columns are covered then return true
to signify that we’re done

*/

bool munkres::step3(void)

{

//an iterator for our while loop
int iter = 0;

//loop through columns

for (int i =0; i < num_columns; i++)

{
//if the column is starred
if (column_starred[i])
{
//cover it
column_covli] = true;
}
}

//while every column so far is covered
for (int i =0; i < num_columns; i++)

{
if (column_cov[i])
{

iter++;

}

}

if (diag_on)

{
std::cerr << “Step 3” << std::endl;
diagnostic(6);

}

//if all the rows were covered
if (iter == num_rows)
{

//exit algorithm

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

return true;

}
//else goto step 4
else
return step4();
}
/!
Step 4.

Find a noncovered zero and prime it
if there isn’t a starred zero in its row then goto step 5
if there is then cover the current row and uncover the column with the starred zero
then look for more uncovered zeros
if there are no uncovered zeros we go to step 6
*/
bool munkres::step4(void)
{
//To find the smallest uncovered value
int smallest = 0;
//iterate through rows
for (int i =0; i < num_rows; i++)
{
//if the current row isn’t covered
if ('row_covli])

{

//set smallest = first element in the current row

while (smallest == 0){
smallest = cell_array[i][0].weight;
//if the first element is 0 then increase the row
if (smallest == 0)

{
if (i < num_rows-1)
i++;
else
break;
}

}

//iterate through columns
for (int j = 0; j < num_columns; j++)

{
//if the column and row aren’t covered, the current index is zero,
//and there isn’t a star in the current row,
//then prime the current index and go to step 5
if (!column_cov[j] && !row_cov][i] && cell_arrayl[i][j].weight ==
&& !row_starred[i])
{
//prime current index
cell_array[i][j].primed = true;
//if a primed zero with no star in the row exists
//goto step 5
if (diag_on)
{
std::cerr << “Step 4: “<<i<< “, “<<j<<std::endl;
diagnostic(6);
}
return step5(i, j);
}
//if the column and row aren’t covered, the current index is zero,
//and there is a star in the current row,
//then prime the current index, cover the current row
International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 26

| SSN: 2276-8815

//and uncover the column with the starred zero

//also reset indeces to 0 to look for zeros that may have been

uncovered
else if (lcolumn_cov[j] && !row_cov[i] && cell_array[i][j].weight
==0)
{
//prime current index
cell_array[i][j].primed = true;
//cover current row
row_covli] = true;
//uncover column with starred zero
column_cov[find_star_row(i)] = false;
i=0;
j=0;
}

//if the column isn’t covered, the current index isn’t zero,
//and the current index is smaller than smallest so far,

//then set smallest == current index

else if (!column_cov[j] && cell_arrayl[i][j]l.weight != 0 &&

cell_array[i][j].weight < smallest)

{
//set smallest == current index
smallest = cell_array[i][j].weight;
}
}
}
}
if (diag_on)
{
std::cerr << “Step 4” << std::endl;
diagnostic(6);
}

//if we don’t go to step 5 then go to step 6
return step6(smallest);

)
/*!

Step 5.

Start at the primed zero found in step 4.

Star this zero, erase its prime, and check for a starred zero in current column.
If there is one, erase its star and go to the primed zero in its row.

Continue until we arrive at a primed zero with no starred zero in its column.
Uncover every row and column in the matrix and return to step 3.

This step checks to see if there is a matching in the current
matrix without altering any values
*/
bool munkres::step5(int r, int c)
{
//to determine if we’re done creating the sequence
//of starred and primed zeros
bool done = false;

//are we looking for a star or prime
bool looking_for_star = true;

//for stupid special case in which we would look for a star in
//the current column after starring the current index

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

27

//this returns the current index without looking further down
//the column, resulting in an error
int a;

//create our sequence
while (!done)
{
switch (looking_for_star)

{

//if we’re looking for a star
case true:

//special case protection
a=r;

//if there isn’t a starred zero in the current column
if (Icolumn_starred[c])

{
//unprime current index
cell_array[r][c].primed = false;
//star current index
cell_array[r][c].starred = true;
//mark current row starred
row_starred[r] = true;
//set done to true
done = true;

}

else

{
//set the next row to search to the location of the
//starred zero in current column
r = find_star_column(c);
//unprime current index
cell_array[a][c].primed = false;
//star current index
cell_array[a][c].starred = true;
//mark current row starred
row_starred[a] = true;
//set case to look for prime next
looking_for_star = false;

}

//we can’t do this earlier due to needing to check for stars in the

column
//mark the column as starred
column_starred|[c] = true;
break;

//if we’re looking for a prime
case false:

//prime current index
cell_array[r][c].primed = false;
//unstar current index
cell_array[r][c].starred = false;

//unmark current row as starred
row_starred[r] = false;

//set the next column to search to the location of the
//primed zero in current row

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

28

}
/*!

Step 6.

¢ = find_prime_row(r);
//set case to look for star next

looking_for_star = true;
break;

}

//erase all primes and uncover all rows
for (inti =0; i < num_rows; i++)

{
for (int j = 0; j < num_columns; j++)
{
cell_array[i][j].primed = false;
}
row_covl[i] = false;
}

//uncover all columns
for (int i =0; i < num_columns; i++)

{
column_covli] = false;

}

if (diag_on)
std::cerr << “Step 5” << std::endl;
diagnostic(6);

}

//go back to step 3
return step3();

Subtract the smallest uncovered value found in step 4 from all
uncovered values and add it to all values whose row AND column
are covered.

Return to step 4.
This gives us a new set of zeros to work with since a matching wasn’t available
with the previous set

*/

bool munkres::step6(int sub)

{

//iterate through rows
for (inti=0; i< num_rows; i++)
{
//iterate through columns
for (int j = 0; j < num_columns; j++)
{
//if the current index’s row and column are uncovered
if (!row_cov[i] && !column_covlj])
{
//substract sub from its weight
cell_arrayl[i][j].weight -= sub;
}

//else if the current index’s row and column are covered
else if (row_cov[i] && column_cov[j])

{

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

29

//add sub to its weight
cell_array[i][j].weight += sub;

}
}
}
if (diag_on)
std::cerr << “Step 6” << std::endl;
diagnostic(6);
}

//go back to step 4
return step4();
}
//Diagnostics only
//Does not affect any results
void munkres::diagnostic(int a) const

{
switch (a)
{
//Show base weights in weight_array
case 1:
std::cerr << std::endl << “Base Weights” << std::endl;
for (int i =0; i < num_rows; i++)
{
for (int j = 0; j < num_columns; j++)
{
std::cerr << weight_array[i][j] << “ | “;
}
std::cerr << std::endl;
}
std::cerr << std::endl;
break;
//show current weight values of cell_array
case 2:
std::cerr << std::endl << “Current Weights” << std::endl;
for (int i =0; i < num_rows; i++)
{
for (int j = 0; j < num_columns; j++)
{
std::cerr << cell_array[i][j].weight << “ | “;
}
std::cerr << std::endl;
}
std::cerr << std::endl;
break;
//Show current star placement
case 3:
std::cerr << std::endl << “Starred values” << std::endl;
for (int i = 0; i < num_rows; i++)
{
for (int j = 0; j < num_columns; j++)
{
if (cell_array[i][j].starred == true)
{
std::cerr << cell_array[i][j].weight << “* | *;
}
else
{
std::cerr << cell_arrayl[i][jl.weight << “ | “;
International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 30

| SSN: 2276-8815

}

}

std::cerr << std::endl;
}
std::cerr << std::endl;
break;

//Show current star placement, covered rows, and covered columns
case 4:

std::cerr << std::endl << “Starred values and Lines” << std::endl;

for (inti=0; i < num_rows; i++)

{
for (int j = 0; j < num_columns; j++)
{
if (cell_array[i][j].starred == true)
{
std::cerr << cell_array[i][j].weight << “* | “;
}
else
{
std::cerr << cell_array[i][j].weight << “ “
}
}
if (row_covli])
{
std::cerr << “ X”;
}
std::cerr << std::endl;
}
for (int i =0; i < num_columns; i++)
{
if (column_cov[i]){
stdicerr << “X | %
}
else
{
std::cerr << “ “
}
}
std::cerr << std::endl;
break;

//Show current prime placement, covered lines and covered columns
case 5:

std::cerr << std::endl << “Primed values and Lines” << std::endl;

for (inti=0; i < num_rows; i++)

{
for (int j = 0; j < num_columns; j++)
{
if (cell_array[i][j].primed == true)
{
std::cerr << cell_array[i][j].weight << “ | “;
}
else
{
std::cerr << cell_arrayl[i][j].weight << “ “
}
}
International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 31

| SSN: 2276-8815

if (row_covli])

{
std::cerr << “ X”;
}
std::cerr << std::endl;
}
for (inti = 0; i < num_columns; i++)
{
if (column_cov[i]){
stdizcerr << “X | %
}
else
{
std::cerr << “ “
}
}
std::cerr << std::endl;
break;

//Show current star and prime placement, covered rows, and covered

columns
case 6:
std::cerr << std::endl << “Starred values and Lines” << std::endl;
for (int i =0; i < num_rows; i++)
{
for (int j = 0; j < num_columns; j++)
{
if (cell_array[i][j].starred == true)
{
std::cerr << cell_array[i][j].weight << “* | *;
}
else if (cell_array[i][j].primed == true)
{
std::cerr << cell_array[i][j].weight << “ | *;
}
else
{
std::cerr << cell_arrayl[i][j].weight << “ “
}
}
if (row_covli])
{
std::cerr << “ X”;
}
else
{
std::cerr << “ %
}
if (row_starred[i])
{
std::cerr << “ *”;
}
std::cerr << std::endl;
}
for (int i = 0; i < num_columns; i++)
{
if (column_cov[i]){
International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013 32

| SSN: 2276-8815

stdizcerr << “X | %

«

std::cerr << “ ;

}
std::cerr << std::endl;

for (int i =0; i < num_columns; i++)

{
if (column_starred[i]){
std::cerr << “* | “;;
}
else
{
std::cerr << “ “
}
}
std::cerr << std::endl;
break;
default:
break;
}
}
/*

* munkres.h
* Hungaraian Assignment Algorithm
*/
#ifndef MUNKRES_H
#define MUNKRES_H
#include <iostream>
include <vector>
//! This is a struct for the cells of the matrix.
struct cell
{
//The weight value in the cell
int weight;

//Values for whether the cell is primed or starred
bool starred, primed;
//initialize starred and primed values to false

cell()

{
starred = false;
primed = false;
weight = -1;

}

3
//! It’s an ordered pair, not much else to say
struct ordered_pair

{

int row, col;

|3

//! This munkres class.

/!

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

33

This class handles the implementation of the Kuhn-Munkres
Assignment algorithm.

The description of the algorithm can befound at
http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html

*/

class munkres

{

public:
munkres(void);
~munkres(void);
/*! This function is used to turn diagnostics on or off */
void set_diag(bool a)
{

diag_on = a;

}

/*!

Load weight array from a vector of vectors of integers
@param x An object of type vector< vector<int> >, which is
a matrix of any dimensions with integer values > -1

*/

void load_weights(std::vector< std::vector<int> > x);

/*!
This function will assign a matching and
return the total weight of the matching.
@param *matching takes a pointer to integer as a parameter
and this will be the matching in the form of an array
*/

int assign(ordered_pair *matching);
private:

int num_rows; /*!< An integer to show the total number of rows */
int num_columns; /*!< An integer to show the total number of columns */

std::vector<bool> row_starred, column_starred;
/*1< Arrays to track which columns and rows are starred */

std::vector<bool> row_cov, column_cov;
/*1< Arrays to track which columns and rows are covered */

bool diag_on; /*!< A boolean value to turn daignostics on or off */

//Initialize all variables for operations
void init(void);

//The matrix operated on by Munkres’ algorithm
//(could be better than an array in the future)
std::vector< std::vector<cell> > cell_array;

//array to store the weights for calculating total weight
std::vector< std::vector<int> > weight_array;

//functions to check if there is a starred zero in the current row or column
int find_star_column(int c);
int find_star_row(int r);

//functions to check if there is a primed zero in the current row or column
int find_prime_column(int c);
int find_prime_row(int r);

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

34

//These are the declarations for Munkres’ algorithm steps
void stepl(void);

void step2(void);

bool step3(void);

bool step4(void);

bool step5(int, int);

bool step6(int sub);

//The function that will call each of step of Munkres’ algorithm in turn
//We’re using this since multiple functions use the algorithm
bool find_a_matching(void);

//A function simply for diagnostic purposes

//Useful for testing new code and to help both myself and anyone who
//wants to modify this in the future

void diagnostic(int a) const;

#endif MUNKRES_H

International Journal of Engineering and Mathematical Intelligence, Vol. 3, No. 3, December 2013

| SSN: 2276-8815

