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ABSTRACT 
 

A research is conducted on mathematical modeling approach for sensitivity and stability 

analyses of cholera disease in aquatic habitat. A deterministic mathematical model is 

formulated in the analyses of the degree of sensitivity and stability of the dynamical system 

which aid cholera transmission, spread and control. A numerical approach was adopted 

using the non-linear (autonomous 1st order) ordinary differential equations (ODE45 

numerical scheme) to tackle the problem of sensitivity and stability. Results of sensitivity and 

stability analyses have significant epidemiological importance in Cholera control. Sensitivity 

indices of the basic reproduction number are derived, existence and stability of the model 

steady state based on threshold value were shown. The study further shows that long-term 

precise predictions of the concentration of infected cells during cholera could be difficult until 

these key parameters are correctly determined. These results are vital in the ongoing cholera 

vaccine development. An important parameter to cholera transmission is the contact between 

susceptible and infected persons, while a crucial parameter to cholera control is the rate of 

cholera awareness. 

  

Keywords: Sensitivity, stability, dynamical system, cholera transmission, numerical scheme 

 

1.0 INTRODUCTION 
 

Living and non-living organisms co-exist and interact with the environment, and in 

the process get infected or polluted with the activities on the environment which in 

turn generate into disease and sickness. The cholera epidemic is a fatal water-borne 

disease causing diarrhea, dehydration, and vomiting in an individual (WHO, 2019). 
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Cholera is transmitted through ingesting contaminated feaces and touching vomit and 

corpse killed by the bacterium without using protective devices (Panja, 2019). The 

disease has incubation period of less than 24 hours to 5 days and the infection is often 

asymptomatic. Not greater than 25% of the infected persons are asymptomatic and of 

these 10 - 20% of the infected persons show severe symptoms. A constant loss of body 

fluids leads to dehydration, and rejecting treatment as the incident occurs, hastens the 

death of the infected person within a few hours (Mosler & Kessely, 2015).  

 Sensitivity and stability analyses in mathematical biology with respect to 

cholera diseases tell us how important each parameter is to the disease (cholera) 

transmission and is used to access how sensitive a model is to variation in the value 

of the parameters of the model and the changes in the structure of the model (Numfor, 

2010 and Rodrigues et al., 2013). It also describes which parameters are vital in 

contributing to the prediction imprecision (that is how do changes in the values of the 

input parameter alter the value of the outcome variable) (Blower & Dowlatabadi, 

1994). Above all, it is used to uncover parameters with high impact on the basic 

reproduction number Ro, so that it is directly targeted by intervention strategies. Over 

the past few years, sensitivity and stability analyses of cholera models have received 

attention of modelers and thereby become a subject of intense study. Many models 

have been developed to access sensitivity and stability of each factor driving the 

disease to ascertain the major factors to be targeted by the relevant interventions to 

eradicate the disease which had been in existence for over 200 years (Neilean et al., 

2010). Sensitivity and stability analyses of cholera tells us how diseases are 

transmitted which is greatly through aquatic habitat and the mathematical models used 

to study or uncover the parameter with high input on the basic reproduction number 

so that that it will directly target the intervention strategies. The epidemic outbreaks 

in susceptible populations, many of these factors are ignored; models assume a single 

infecting strain, an entirely susceptible population, and a short time scale for the 

epidemic can be neglected. 

Sensitivity analysis can determine how variability of the input causes 

variability in the output. That is to quantify the ratio of output perturbations with 

respect to the input perturbations. The sensitivity and stability of cholera in aquatic 

habitat is carried out by dividing the population denoted by N(t) according to the 

infection status into S(t) – susceptible, I(t) – infected, R(t) – recovered and B(t) is the 

amount of concentration of vibrio cholarae in aquatic habitat at time t. And the model 

parameters are π, human recruitment rate, ξ, the rate of human contribution to the 

population of Vibrio cholera, β1, rate of human exposure to contaminated water, δ, 
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natural death rate of vibrio cholera, µ, death rate unrelated to cholera, µc, death rate 

due to cholera, β2, rate of contact between susceptible and infected persons, θ, rate of 

cholera awareness, ω, rate of sanitation, υ, rate of vaccination, ρ, rate of cholera 

treatment and N, pathogen concentration that yields 50% catching cholera. 

A mathematical model or frame work is formulated to analyze the degree of 

sensitivity and stability of some factors that aid cholera transmission and possible 

management. The disease free equilibrium point and local stability of the disease free 

and endemic equilibra of the model will be obtained in analysis. The reproduction 

number Ro with interactions are stated and the method of normalized forward 

sensitivity index is employed to determine the numerical value of the key model 

parameters with respect to the effective reproduction number to determine their 

relative importance of cholera transmission and its management. 

The aim of this study is to carry out sensitivity and stability analyses of cholera 

infection using mathematical model when disease occurs in a population involving 

susceptible, infected and recovered persons in an aquatic habitat, and the behavior of 

control variables of the cholera infection due to the rate of human exposure to 

contaminated water. It will help in identifying influential model parameters and 

optimizing model to quantify the effects of sensitivity and stability on input 

parameters, and the subsequent effect on the models output. 

 

2.0 Theoretical Assumptions 

 

In disease model formulation, we make simplifications and assumptions on the model 

itself and on the parameters that represent the different transition and interaction in 

the model in question. Owing to the changes on parameter values, it is important to 

correctly understand the possible effects of such parameter values to the expected 

model output (Stockholm, 2006). Sensitivity and stability in the set of parameter 

values create variability in the models predictive capabilities. The less the number of 

changes in parameters in the model, the less the significance of variability introduced 

into a model, and vice-versa (Gomero, 2012). 

Edward & Nyerere (2015) made a mathematical model that entailed some vital 

dynamics of cholera transmission with public health educational campaigns, 

vaccination, sanitation and treatment as control strategies in limiting the disease. 

Sensitivity analysis was carried out by them in the basic reproduction number with all 

control strategies and was discovered that the most sensitive parameters are 

educational campaigns, therapeutic treatment, and effective contact between the 
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susceptible and infected persons, bacteria carrying capacity and recruitment rate. And 

they concluded that any strategy aimed at eliminating cholera should target these 

parameters. Mondal & Kar (2013) showed a waterborne disease epidemic model 

amenable to cholera dynamics including multiple transmission namely, water-to-

person and person-to-person transmission. Their study of the sensitivity analysis of 

the system in reference to some crucial parameters and discovering of the number of 

infected persons and pathogen concentrations were directly proportional to the two 

type disease transmission rate. It was also discovered that if person-to-person contact 

was not applied, then the disease may be transmitted through the contaminated 

reservoir and within a very small time it might spread into the entire population. 

Kadeleka (2011) carried out a study by formulating a basic mathematical model to 

access the effects of nutrition and treatment of cholera dynamics, and the 

computational results indicated that the cholera epidemic can be controlled when 

intervention, nutrition and treatment are introduced. 

The disease model provides a mathematical representation of the dynamic 

transmission cycle, involving interactions between infected and susceptible hosts that 

are generally expressed as a set of coupled ordinary differential equations (ODEs) 

(Keeling, 2007). The model outputs (the ODE solutions over a simulation interval), 

provides a dynamic representation of the transmission process. Fraser (2008) said that 

model outputs often have complex, non-linear relationship with model parameter, 

values and inappropriate choices of parameter values can lead to bias in model outputs 

(Ecohard 2010). Sensitivity analysis characterizes the response of model outputs to 

parameter variations, (Tarantola 2008). Sensitivity and stability can affect the 

reliability of the results at every stage of computations; they may grow or shrink as 

the solution of the model evolves.  

  

3.0 MATERIALS AND METHODS 
 

3.1 Model Formation  

 

The interaction between the population of susceptible persons, the infected, the 

recovered persons and the vibrio cholerae concentration in the aquatic habitat which 

are time dependent is being studied in formulating the system of non-linear ordinary 

differential equations. This mathematical formulation describes an aspect of vibrio 

cholerae infection which defines a set of deterministic values with application in 

health informatics modeling. 
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3.2 Mathematical Formation 

The model used in this research work is a set of deterministic system of time non-

linear first order differential equation proposed by Wang and Mondak (2011) which 

describes the transmission of the vibrio cholerae infection. 

 

3.3 Mathematical Modeling 

This refers to the process of describing a system by means of mathematical concepts 

and language. In other words, mathematical modeling is a process of encoding and 

decoding reality in which a natural phenomenon is reduced to a formal numerical 

expression by a causal process. 

 

3.4 Computational Approach 

This is the study that straddles the artificial intelligence and psychology divide. It is 

concerned with developing computer models of human cognitive process and is based 

on a mental, brain and computer program analogy. Computational models are 

Mathematical models that employ a computer simulation to quantitatively examine 

the behaviour of a complicated system. A computational model can be used to forecast 

the behviour of a system under various conditions, which is useful in situation where 

straight forward analytical solution are not readily accessible. 

 

Table 3.1: The definition for the model parameter, their values, units and source  
Parameter  Symbol Values Units Sources  

Human recruitment rate π 10 day-1 Kadeleka, 2011  

Rate of Human contribution to the 

population of Vibrio Cholerae  

ξ 10 cells/µl/day Isere et al, 2014 

Rate of human exposure to 

contaminated water 

β1 0.075 day-1 Wang, 2011 

Pathogen concentration that yields 50% 

chance of catching cholera   

N 105 cells/µl Edward & 

Nyerere, 2015 

Natural death rate for Vibrio Cholerae 𝜈 0.4 day-1 Isere et al, 2014 

Death rate unrelated to Cholera µ 0.02 day-1 Kadeleka, 2011  

Human death rate due to cholera µc 0.015 day-1 Kadeleka, 2011  

Rate of contact between susceptible and 

infected persons 

β2 0.00011 day-1 Wang & 

Modnak, 2011 

Rate of Cholera awareness  θ 0.6 Dimensionless  Assumed  

Rate of Vaccination  σ 0.2 Dimensionless  Assumed  

Rate of Sanitation  ω 0.5 Dimensionless  Ochoche, 2013 

Rate of Cholera treatment  𝜌 0.98 day-1 Kadeleka, 2011  

Source: Wang X. and Wang J. (2014) 
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3.5 Method of Solution  

 
𝑑𝑠

𝑑𝑡
= 𝜋 − 𝜇𝑠 − (1 − 𝜃)

𝛽1𝐵𝑆

𝐵+𝑁
− (1 − 𝜃)𝛽2𝐼𝑆 + 𝜎𝑅 − 𝜐𝑆   (3.1) 

 
𝑑𝐼

𝑑𝑡
= (1 − 𝜃)𝛽1𝐵𝑆 + (1 − 𝜃)𝛽2𝐼𝑆 − (𝜇 + 𝜇𝑐 + 𝜌)𝐼     (3.2) 

 
𝑑𝑅

𝑑𝑡
= 𝜎𝑠 − 𝜇𝑅 − 𝜎𝑅 + 𝜌𝐼       (3.3) 

 
𝑑𝐵

𝑑𝑡
= (1 − 𝜃)𝜉𝐼 − (𝜎 + 𝜔)𝐵        (3.4) 

 

Determination of the Steady State Solution 

  

At steady state, 

 
𝑑𝑠

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝐵

𝑑𝑡
= 0      (3.5) 

 

From (3.1),  
𝑑𝑆

𝑑𝑡
= 0. Using (3.5) in (3.1) – (3.4) yields (3.6), (3.7), (3.8) and (3.9) 

respectively 

⇒ 𝜋 − 𝜇𝑆 − (1 − 𝜃)
𝛽1𝐵𝑆

𝐵 + 𝑁
− (1 − 𝜃)𝛽2𝐼𝑆 + 𝜎𝑅 − 𝜐𝑆 = 0 

⇒ 𝜋(𝐵 + 𝑁) − 𝜇𝑆(𝐵 + 𝑁) − (1 − 𝜃)𝛽1𝐵𝑆 − (1 − 𝜃)(𝐵 + 𝑁)𝛽2𝐼𝑆 + 𝜎𝑅(𝐵 + 𝑁)
− 𝜐𝑆(𝐵 + 𝑁) = 0 

⇒ 𝜋𝐵 + 𝜋𝑁 − 𝜇𝐵𝑆 − 𝜇𝑁𝑆 − (1 − 𝜃)𝛽1𝐵𝑆 − (1 − 𝜃)𝛽2𝐼𝐵𝑆 − (1 − 𝜃)𝑵𝛽2𝐼𝑆
+ 𝜎𝐵𝑅 + 𝜎𝑁𝑅 − 𝜐𝐵𝑆 − 𝑁𝜐𝑆 = 0 

⇒ 𝜋𝐵 − 𝜇𝐵𝑆 − 𝜇𝑁𝑆 − (1 − 𝜃)𝛽1𝐵𝑆 − (1 − 𝜃)𝛽2𝐼𝐵𝑆 − (1 − 𝜃)𝑵𝛽2𝐼𝑆 + 𝜎𝐵𝑅 +
𝜎𝑁𝑅 − 𝜐𝐵𝑆 − 𝑁𝜐𝑆 = −𝜋𝑁        (3.6) 

 

From (3.2); 
𝑑𝐼

𝑑𝑡
= 0, 

⇒(1 − 𝜃)𝛽1𝐵𝑆 + (1 − 𝜃)𝛽2𝐼𝑆 − (𝜇 + 𝜇𝑐 + 𝜌)𝐼 = 0   (3.7) 

 

From (3.3) 
𝑑𝑅

𝑑𝑡
= 0, 
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⇒ 𝜎𝑆 − 𝜇𝑅 − 𝜎𝑅 + 𝜌𝐼 = 0       (3.8) 

 

And from (3.4) 
𝑑𝐵

𝑑𝑡
=  0, 

⇒ (1 − 𝜃)𝜉𝐼 − (𝜎 + 𝜔)𝐵 = 0 

⇒ I =
(𝜎+𝜔)𝐵

(1−𝜃)𝜉
= 0        (3.9) 

 

Putting (3.9) in (3.8); we have  

𝜎𝑆 − (𝜇 + 𝜎)𝑅 + 𝜌
(𝜎 + 𝜔)𝐵

(1 − 𝜃)𝜉
= 0 

⇒ 𝜎ξ(1 − 𝜃)𝑆 − (1 − 𝜃)(µ + 𝜎)𝜉𝑅 + 𝜌(𝜎 + 𝜔)𝐵 = 0   (3.10) 

 

Putting (3.9) in (3.7), then 

(1 − 𝜃)𝛽1𝐵𝑆 +
(𝜎 + 𝜔)𝛽2𝐵𝑆

𝜉
−

(𝜎 + 𝜔)(𝜇 + 𝜇𝑐 + 𝜌)𝐵

(1 − 𝜃)𝜉
= 0 

 

⇒ (1 − 𝜃)2𝜉𝛽1𝐵𝑆 + (1 − 𝜃)(𝜎 + 𝜔)𝛽2𝐵𝑆 − (𝜎 + 𝜔)(𝜇 + 𝜇𝑐 + 𝜌)𝐵 = 0 
 

⇒ B[(1 − 𝜃)2𝜉𝛽1𝑆 + (1 − 𝜃)(𝜎 + 𝜔)𝛽2𝑆 − (𝜎 + 𝜔)(𝜇 + 𝜇𝑐 + 𝜌)] = 0 

 

⇒ 𝐵 = 0 or 

 

(1 − 𝜃)2𝜉𝛽1𝐵𝑆 + (1 − 𝜃)((𝜎 + 𝜔)𝛽2𝐵𝑆 − (𝜎 + 𝜔)(𝜇 + 𝜇𝑐 + 𝜌)𝐵 = 0 
 

⇒ [(1 − 𝜃)2𝜉𝛽1 + (1 − 𝜃)(𝜎 + 𝜔)𝛽2]𝑆 = (𝜎 + 𝜔)(𝜇 + 𝜇𝑐 + 𝜌)]. [B* is an 

assumption] 

 

𝑆 =
(𝜎+𝜔)(𝜇+𝜇𝑐+𝜌)𝐵

(1−𝜃)2𝜉𝛽1+(1−𝜃)(𝜎+𝜔)𝛽2
 S*       (3.11) 

 

But by putting B=0 in (3.10), it becomes 

𝜎𝜉(1 − 𝜃)𝑆 − (1 − 𝜃)(𝜇 + 𝜎)𝜉𝑅 = 0  ⇒  𝜎𝑆 − (𝜇 + 𝜎)𝑅 = 0 

⇒ 𝑅 =
𝜎𝑆

𝜇𝜎
          (3.12) 
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Putting B = 0 and I = 0 in (3.6) we have 

−𝜇𝑁𝑆 + 𝜎𝑁𝑅 − 𝑁𝜈𝑆 =  −𝜋𝑁 ⇒ 𝜇𝑆 − 𝜎𝑅 + 𝜈𝑆 = 𝜋 

⇒ (𝜇 + 𝜈)𝑆 − 𝜎𝑅 = 𝜋       (3.13) 

Putting (3.12) in (3.13), then  

(𝜇 + 𝜈)𝑆 −
𝜎2𝑅

𝜇 + 𝜎
= 𝜋 

⇒ (𝜇 + 𝜎)(𝜇 + 𝜈)𝑆 − 𝜎2𝑆 = 𝜋(𝜇 + 𝜎) 

⇒ [(𝜇 + 𝜎)𝜇 + 𝜈) − 𝜎2]𝑆 = 𝜋(𝜇 + 𝜎). 

𝑆 =
𝜋(𝜇+𝜎)

(𝜇+𝜎)(𝜇+𝜈)−𝜎2 = S^    (S^ is an assumption)  (3.14) 

Putting (3.14) in (3.12); then 

𝑅 =
𝜋𝜎(𝜇+𝜎)

(𝜇+𝜎)2(𝜇+𝜈)−𝜎2(𝜇+𝜎)
  

𝑅 =
𝜋𝜎

(𝜇+𝜎)(𝜇+𝜈)−𝜎2
= 𝑅^    (R^ is an assumption) (3.15)  

 
4.0 RESULTS AND DISCUSSION 
 

The sensitivity analysis (test) of cholera in aquatic habitat using the mathematical 

model: 

  
𝑑𝑠

𝑑𝑡
= 𝜋 − 𝜇𝑆 + 𝜎𝑅 − 𝜈𝑆 

 

Table 4.1: Sensitivity Analysis 𝑅 = 40.6, 𝑆 = 5.0, 𝛾 = 0.02, 𝜋 – varies 

𝝅 𝝁 
𝒅𝒔

𝒅𝒕
= 𝝅 − 𝝁𝑺 + 𝝈𝑹 − 𝝂𝑺 

10 0.020 15.90 

11 0.018 16.91 

12 0.016 17.92 

13 0.014 18.93 

14 0.012 19.94 

15 0.010 20.95 

16 0.008 21.96 

17 0.006 22.97 

18 0.004 23.98 

19 0.002 24.99 

20 0.001 25.995 

Source: Umoh, E.S. (2022) 
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In Table 4.1, for a varying value of 𝜋 (human recruitment rate), 1.00 – 10.00 results 

in an increase in the value of the sensitivity of susceptible persons, 𝑆 with 𝜇 ranging 

from 0.02 – 0.002, whereas fro table 4.1.4, a reduction in the value of 𝜋 (10.00 – 1.00) 

and 𝜇 (0.02 – 0.002) indicates a decrease in the sensitivity of susceptible persons. The 

varying 𝜋, from 10 to 20, and varying 𝜇 from 0.020 to 0.002, the dependent variable 

increases from 15.90 to 25.995, equally predicting a decrease in the sensitivity of 

susceptible persons to cholera infection in that habitat. On the sensitivity of 

susceptible persons scenario, the increase in human recruitment rate, predict a 

decrease in the sensitivity of susceptible persons, which is consistent with the work of 

Nwagor and Ekaka-a (2017). 

 

Table 4.2: Quantifying the effect of 10% variation of rate of human exposure to 

contaminated water on the dynamical system(𝛽1 = 0.075) 
Time (t) 𝜷𝟏         S(t) I(t) R(t) B(t) 

0.00 0.0075 1000.000000000000 50.000000000000 20.000000000000 120.000000000000 

0.05 0.0075 979.591987364246 81.182300010017 45.500872272003 134.832357682902 

0.10 0.0075 960.024498818397 114.409772291615 73.148413974624 160.612234385295 

0.15 0.0075 941.314.692627377 152.267176422852 103.246551833984 197.727373661316 

0.20 0.0075 923.479494323779 197.235773857825 136.320740289395 247.415720551232 

0.25 0.0075 906.537839133412 251.789364962090 173.137068246353 311.816693264859 

0.30 0.0075 890.517824728392 318.712935297366 214.690885173226 393.843572322504 

0.35 0.0075 875458559092120 401.174003936125 262.248363971623 497.321181731835 

0.40 0.0075 861.415805989765 502.971972257721 317.383049885002 627.055239804064 

0.45 0.0075 848.464517006677 628.647498484801 382.039001757182 789.041391871032 

0.50 0.0075 836.705076565613 783.779753605760 458.608920768520 990.681518202128 

0.55 0.0075 826.266767344155 975.179478878350 550.032103943846 1241.108843301104 

0.60 0.0075 817.315692852690 1211.339808401815 659.928660310351 1551.587823269608 

0.65 0.0075 810.059331135194 1502.807480240954 792.757378258524 1936.040357762632 

0.70 0.0075 804.756634565558 1862.954082082231 954.045536990950 2411.758504449836 

0.75 0.0075 801.723504276388 2308.732254439054 1150.656879514565 3000.302721334482 

0.80 0.0075 801.344639168330 2862.101997841409 1391.203215812687 3728.823310399562 

0.85 0.0075 804.078747657475 3551.634584045606 1686.527131260514 4631.688463938120 

0.90 0.0075 810.469156535430 4415.318514607173 2050.482021326027 5753.068372252369 

0.95 0.0075 821.144526934345 5504.061264432333 2500.854823502280 7150.065517697770 

1.00 0.0075 836.817790043535 6887.470724293232 3060.905766898180 8897.946665264065 

 

Table 4.2 shows the contribution of contact between susceptible and infected persons 

on the dynamic system. The smaller value of the contact rate between the susceptible 

and infected persons (𝛽2) (ranging from 0.000011 to 0.000099) yield or predict a 

relatively high value of 𝜆. Whereas, an increased value of 𝛽2, predicted smaller values 

of 𝜆 resulting to unstable steady state solution of the dynamical system. By 

quantifying 10% variation of human exposure to contaminated water, the susceptible 
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persons’ value decreases, unlike the infected, recovered and total concentration of 

vibrio cholera which shows a remarkable increase in population. On the contribution 

of contact between susceptible and infected persons on the dynamical system, and 

variation of the rate of human exposure to contaminated water, predict a 

predominantly unstable steady state solution on the dynamical system. 

 

Table 4.3: Quantifying the effect of 20% variation of rate of human exposure to 

contaminated water on the dynamical system(𝛽1 = 0.075) 
Time(t) 𝜷𝟏 S(t) I(t) R(t) B(t) 

0.00 0.015 1000.0000000000 50.0000000000 20.0000000000 120.0000000000 

0.05 0.015 979.5247717019 118.3546950346 47.2743789577 1419.132023774 

0.10 0.015 959.7925501900 198.2540373023 80.6351277163 1898.958408994 

0.15 0.015 940.8582508693 303.1484535409 121.7374979612 2687.280383076 

0.20 0.015 922.7673018559 448.2448515860 173.5651582395 3881.687355685 

0.25 0.015 905.5777276517 653.0410384695 240.7084027867 5637.222849946 

0.30 0.015 889.3760734270 943.6013734849 329.8291484704 8181.629214136 

0.35 0.015 874.3014351320 1356.1569346666 450.4690786378 11842.192908184 

0.40 0.015 860.5660767177 1940.8328239316 616.0654332684 17080.620211227 

0.45 0.015 848.4927651619 2768.4831028998 845.6481291009 24550.693581087 

0.50 0.015 838.5475934918 3938.4155158369 1165.8996927391 35169.514878353 

0.55 0.015 831.3932896742 5593.3457331281 1614.7037992287 50239.435974208 

0.60 0.015 827.9283737027 7937.7509954822 2245.5036780212 71599.781227508 

0.65 0.015 829.3174922622 11274.9253039148 3135.3157907686 101906.698532478 

0.70 0.015 836.9748401065 16056.2475884589 4394.8319175857 144988.334175468 

0.75 0.015 852.3711124423 22982.1126689830 6188.4988237785 206559.501230407 

0.80 0.015 876.7187351385 33141.3360043827 8760.3714659819 295139.768231085 

0.85 0.015 909.9695495064 48283.1789899114 12487.6710772916 423984.738507369 

0.90 0.015 949.8563472918 71164.1927868801 17949.2075529415 613525.382608508 

0.95 0.015 990.1980373529 106122.4718418230 26056.5926781758 896081.786101024 

1.00 0.015 1022.1379076303 159595.5334627266 38214.2903453303 1321500.904060970 

 

Table 4.3 shows that a 20% variation of the rate of human exposure to 

contaminated water at a constant value of 𝛽1 = 0.015 yielded a relative increase in 

the value of susceptible persons, infected recovered and the total cholera population 

with fluctuation in the susceptible persons. By quantifying 20% variation of human 

exposure to contaminated water, the susceptible persons’ value decreases, unlike the 

infected, recovered and total concentration of vibrio cholera which shows a 

remarkable increase in population. 
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Table 4.4: Quantifying the effect of 10% variation of rate of contact between 

susceptible and infected persons on the dynamical system(𝛽2 = 0.00011) 
Time 

(t) 

𝜷𝟐 S(t) I(t) R(t) B(t) 

0.00 0.000011 1000.00000000 50.00000000 20.00000000 120.00000000 

0.05 0.000011 989.79913392 234.17803476 36.51683663 142.27640358 

0.10 0.000011 979.87616098 466.76102782 62.69250908 203.48864085 

0.15 0.000011 970.32353896 807.99472548 102.19301397 317.08217256 

0.20 0.000011 961.27106001 1341.68471417 162.08443747 509.71696246 

0.25 0.000011 952.91774468 2194.48072004 254.39285814 827.12967436 

0.30 0.000011 945.58421523 3567.56844539 398.86288647 1344.55391231 

0.35 0.000011 939.78498539 5781.69463603 627.47961125 2183.98442080 

0.40 0.000011 936.35452330 9358.00828980 992.08193591 3543.17115363 

0.45 0.000011 936.63316235 15145.57836600 1576.49405324 5741.99392631 

0.50 0.000011 942.78047840 24561.06049793 2518.00202900 9304.66721372 

0.55 0.000011 958.25752688 40012.72500020 4042.46530177 15094.31919962 

0.60 0.000011 988.58543503 65777.18767535 6533.41101042 24579.67400431 

0.65 0.000011 1042.61199115 109822.50240127 10653.38135437 40302.72767256 

0.70 0.000011 1134.02578860 188075.66655015 17627.96768232 66988.16995387 

0.75 0.000011 1284.42613285 335106.83123722 29801.43986815 113699.88013467 

0.80 0.000011 1521.72676010 632324.81765584 52216.76602222 200075.31939831 

0.85 0.000011 1874.27372767 1291267.56594397 96343.10347066 370936.67223750 

0.90 0.000011 2308.33492848 2873840.20395146 191092.14513541 739875.50533415 

0.95 0.000011 2619.79730492 6814400.93741627 411071.60893039 1600566.50481003 

1.00 0.000011 2638.66745859 16124877.23187691 934934.99752241 3655523.97738281 

.  

Table 4.4 shows the behavior of the control variable of the cholera infection 

due to variation of the data set of human exposure to contaminated water, when 𝛽1 is 

constant at 0.075. The value of the susceptible persons ranges from 50.0000 to 

1900669211.471159. The recovered persons ranges from 20.0000 to 

243802383.016390, whereas the population of cholera (bacteria) in the aquatic habitat 

which ranges from 120.0000 to 91378703080.07970. By quantifying 10% variation 

of rate of contact between susceptible and infected persons, and at constant 𝛽2, the 

susceptible persons’ value increases, likewise the infected, recovered and total 

concentration of vibrio cholera. The increase in the rate of contact between susceptible 

and infected persons predicts a reduction in the population of susceptible persons and 

increase in the concentration of cholera infection 
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Table 4.5: Quantifying the effect of 20% variation of rate of contact between 

susceptible and infected persons on the dynamical system(𝛽2 = 0.00011) 
Time (t) 𝜷𝟐       S(t) I(t)      R(t)       B(t) 

0.00 0.000022 1000.000000000 50.000000000 20.000000000 120.000000000 

0.05 0.000022 989.768606072 234.206697336 36.517275094 142.278658865 

0.10 0.000022 979.771809519 466.854682455 62.695141214 203.502188609 

0.15 0.000022 970.086948123 808.187887900 102.200864417 317.122811346 

0.20 0.000022 960.814435560 1341.968856788 162.100668442 509.803309046 

0.25 0.000022 952.103464909 2194.652741151 254.415531881 827.263554410 

0.30 0.000022 944.193389609 3566.759722812 398.864500800 1344.640815305 

0.35 0.000022 937.467604308 5777.022352568 627.349116771 2183.608047814 

0.40 0.000022 932.548769609 9340.870223306 991.442427439 3540.874941192 

0.45 0.000022 930.433174196 15091.607367805 1574.238048638 5733.460425427 

0.50 0.000022 932.712632894 24403.257203989 2510.920474247 9277.299181748 

0.55 0.000022 941.891490462 39568.891618056 4021.842209734 15013.869222148 

0.60 0.000022 961.824215162 64552.151530075 6475.001889358 24350.577363844 

0.65 0.000022 998.326894917 106447.256005927 10492.083288587 39668.513016143 

0.70 0.000022 1059.357480321 178665.162412581 17178.749235978 65217.759857831 

0.75 0.000022 1155.087573446 308013.149866675 28545.787343783 108746.260558930 

0.80 0.000022 1291.647361810 550796.401747412 48563.282922771 185636.434778628 

0.85 0.000022 1461.946621204 1028891.329600502 85195.880397459 326815.695009516 

0.90 0.000022 1613.762393598 1996136.729533204 155283.595774585 597919.036288180 

0.95 0.000022 1675.167348639 3927091.525916773 292837.525835975 1131455.203963971 

1.00 0.000022 1667.479800141 7654207.146095336 562187.717389170 2177446.959462845 

 

Table 4.5 shows a monotonically decreasing pattern in the values of 𝑆(𝑡) – susceptible 

persons per time from 1000.000000 to 801.3446. In contrast, the values of infected 

persons, recovered persons and the total cholera population increase monotonically 

from their critical values due to a small increase in the rate of human exposure to 

contaminated water. This is significant in mitigating cholera infection and relevant in 

public health policy initiatives. By quantifying 20% variation of rate of contact 

between susceptible and infected persons, and at constant 𝛽2, the susceptible persons’ 

value increases, likewise the infected, recovered and total concentration of vibrio 

cholera. On the behavior of the control variables of cholera infection, the population 

of infected persons, recovered persons, the total cholera concentration increases 

monotonically from their critical value due to a small increase in the rate of human 

exposure to contaminated water. This is significant in mitigating cholera infection and 

it is relevant in public health initiative. 
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Table 4.6: Effect of human exposure to contaminated water on the stability of the dynamical system 
𝜷𝟏 𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 TOS 

0.075 -39812.71658669595 -17.41682184082 7.42003594031 -0.55361051806 Unstable 

0.0075 -10.274244434883473 8.821119747921539 -0.554962766574937 -0.554962766574937 Unstable 

0.015 -7.256844086446767 -7.256844086446767 8.091947754763949 -0.573257526961217 Unstable 

0.0225 -23.095180665399170 -23.095180665399170 7.160009402147707 -0.551079284789429 Unstable 

0.030 -153.8635556813403 -27.1159505968098 7.1799979842951 -0.5510483500691 Unstable 

0.0375 -578.9367232325724 -22.8116228962738 7.2705089745925 -0.5516086485719 Unstable 

0.0450 -1680.364280844664 -20.955689424133 7.337286181894 -0.552121208243 Unstable 

0.0525 -4223.271160778493 -19.721078469626 7.379806616197 -0.552630083585 Unstable 

0.060 -9590.259366973847 -18.785359328819 7.404475528078 -0.553073445315 Unstable 

0.0675 -20153.50382187567 -18.04193055810 7.41655838946 -0.55329581072 Unstable 

0.07125 -28523.37541459641 -17.71182692062 7.41923510726 -0.55353702236 Unstable 

0.0735 -34896.45855069797 -17.53624561912 7.41990260902 -0.55349892068 Unstable 

0.0825 -74762.01294088454 -16.88852503356 7.41729687167 -0.55381336388 Unstable 

0.090 -134550.9262181156 -16.4259261863 7.4099976886 -0.5541029670 Unstable 

0.0975 -233542.9296624187 -16.0209634156 7.3993965980 -0.5543457613 Unstable 

0.105 -392881.0377219479 -15.6595619514 7.3862795538 -0.5546171875 Unstable 

0.1125 -643102.2387031537 -15.3429756073 7.3716793771 -0.5546984094 Unstable 

0.120 -1027592.758041501 -15.054745183 7.355684829 -0.554830182 Unstable 

0.1275 -1607083.434771557 -14.790710709 7.338619109 -0.555003973 Unstable 

0.135 -2465929.821303217 -14.549804605 7.320900144 -0.555152387 Unstable 

0.1425 -3718034.128378208 -14.327417689 7.302627169 -0.555316507 Unstable 

0.14625 -4538088.494748818 -14.222465972 7.293336797 -0.555402420 Unstable 

0.1485 -5105291.435448762 -14.164305968 7.287981311 -0.555372186 Unstable 

 
Table 4.7: Effect of contact between susceptible and infected persons on the dynamical system 

𝜷𝟐 𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 TOS 

0.000011 -279.9180826108713 -32.7046959188386 10.8053312218446 -0.2841587390234 Unstable 

0.000022 -156.4572482671883 -27.4673811577599 9.1574477632315 -0.3337019730729 Unstable 

0.000033 -104.5722007835395 -25.4336228543098 8.4447235686995 -0.3763937440429 Unstable 

0.000044 -75.941480702552610 -24.645579250602612 8.059197715008937 -0.413200887920538 Unstable 

0.000055 -57.359786113535542 -24.755609557963712 7.826607965349210 -0.445120650131634 Unstable 

0.000066 -43.517016920323471 -25.998114822145990 7.676124148093995 -0.473151685242553 Unstable 

0.000077 -30.193790730120305 -30.193790730120305 7.574706660603323 -0.497853989239400 Unstable 

0.000088 -26.746292078205638 -26.746292078205638 7.503857182535888 -0.519787905813366 Unstable 

0.000099 -24.073830501017767 -24.073830501017767 7.451977938562727 -0.539471509118388 Unstable 

0.0001045 -22.942541473776398 -22.942541473776398 7.431358634429062 -0.548564146162581 Unstable 

0.0001078 -22.313569469611540 -22.313569469611540 7.420839594284378 -0.553690917901242 Unstable 

0.000121 -20.163273116596745 -20.163273116596745 7.384056538958928 -0.573173256132916 Unstable 

0.000132 -18.701031746903503 -18.701031746903503 7.360383640682048 -0.587761920803750 Unstable 

0.000143 -17.467408351561645 -17.467408351561645 7.340708064730648 -0.601109797949579 Unstable 

0.000154 -16.413564350254426 -16.413564350254426 7.323711742241775 -0.613373071913307 Unstable 

0.000165 -15.503493356122398 -15.503493356122398 7.308474253470843 -0.624682347831496 Unstable 

0.000176 -14.710093239144708 -14.710093239144708 7.294347612642705 -0.635147789812080 Unstable 

0.000187 -14.012591442106537 -14.012591442106537 7.280873943461584 -0.644863013632623 Unstable 

0.000198 -13.394811322422317 -13.394811322422317 7.267729961416242 -0.653908103977543 Unstable 

0.000209 -12.843976554422454 -12.843976554422454 7.254688742598846 -0.662351989202810 Unstable 

0.0002145 -12.590397927028128 -12.590397927028128 7.248152339771663 -0.666368085965177 Unstable 

0.0002178 -12.444596670422705 -12.444596670422705 7.244214630212560 -0.668716208672557 Unstable 
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CONCLUSION AND RECOMMENDATION 
 

This work presents sensitivity and stability analyses, a mathematical model of 

infectious disease of cholera in aquatic ha using ODE45 numerical scheme. In the 

context of modeling of first order non-linear differential equation of a dynamical 

system involving cholera infection, and adopting a computational approach to 

investigate the sensitivity and stability analyses of the system under investigation 

which is another frontier of knowledge in mitigating cholera infection spread. The 

increase in the rate of contact between susceptible and infected persons predicts a 

reduction in the population of susceptible persons and increase in the concentration of 

cholera infection. Therefore, the numerical method utilized in this work can be 

extended in tackling the uncertainty on a dynamical system involving cholera 

infection. 

 

REFERENCES 
 

Blower, S.M. & Dowlatabadi, H. (1994). Sensitivity analysis of complex models of 

disease transmission: an HIV model as an example. International Statistical 

Review, 62(2), 229 –243. 

Ecohard, R. (2010). Methodology of the sensitivity analysis used for modelling on 

infection disease. Vaccine, 28, 8132 –8140. doi:10.1016/j.vaccine.2010.09.099 

Edward, S. & Nyerere, N. (2015).A mathematical model for the dynamics of cholera 

with control measures. Application of Computational Mathematics, 4(2), 53 – 63. 

Fraser, C. (2012). Mathematical models on infectious disease transmission. National 

Reservoir Micro Biology, 6, 477 –487. 

Gomero, B. (2012). Latin hypercube sampling and partial rank correlation coefficient 

analysis applied to an optimal control problem. Master’s Thesis, University of 

Tennessee. https://trace.tennessee.edu/utk_gradthes/1278 

Isere A. O., Osemwenkhae J. E. & Okuonghae D. (2014). Optimal control model for 

the outbreak of cholera in Nigeria. African Journal of Mathematics, Computer 

Science Research, 7(2), 24  

Kadeleka, S. (2011). Assessing the effects of nutrition and treatment in cholera 

dynamics: The case of Malawi. M.Sc. Dissertation, University of Deres Salaam. 

Keeling, M. (2007). Modelling infectious disease in human and animal. Princeton 

University Press. 

Mondal, P. K. & Kar, J. K. (2013). Global dynamics of waterborne disease model 



International Journal of Engineering and Mathematical Intelligence 

Volume 8, Number 1, April 2024 

ISSN(p): 2276-8815 ISSN(e): 2795-3041 

Published By 
International Centre for Integrated Development Research, Nigeria 

In collaboration with 
Copperstone University, Luanshya, Zambia 

 

This Article is Licensed under Creative Common Attribution-NonCommercial 4.0 International 48 

https://creativecommons.org/licenses/by-nc/4.0   36 

with multiple transmission pathways .Applications and Applied Mathematics, 

8(1), 75 – 98. 

Mosler, J. & Kessely, H. (2015). Factors determining water treatment behaviour for 

the prevention of cholera treatment in Chad. The American Journal of Tropical 

Medicine and Hygiene, 93, 57 – 65.  

Neilean R. L., Schaefer E., Gaff H., Fister K. R. & Lenhart S. (2010). Modeling 

optimal intervention strategies for cholera. Bulletin of Mathematical Biology, 72, 

4 – 18. 

Numfor, E. S. (2010). Mathematical modeling, simulation, and time series analysis of 

seasonal epidemics. M.Sc. Thesis, East Tennessee State University. 

Nwagor, P. & Ekaka-a, E. N. (2017). Sensitivity of a mathematical model of HIV 

infection with a fractional order characterization. International Journal of Pure 

and Applied Sciences, Cambridge Research and Publications, 10(1), 86 – 92. 

Ochoche, J. M. (2013). A mathematical model for the transmission dynamics of 

cholera with control strategy. International Journal of Scientific and Technology 

Research, 2(11), 212 – 217. 

Panja, P. (2019). Optimal control analysis of a cholera epidemic model. Biophysical 

Review and Letters, 14, 27 – 48. 

Rodrigues H. S., Monteiro M. T. & Torres D. F. (2013). Sensitivity analysis in a 

dengue epidemiological model. http://dx.doi.org/10.1155/2013/721406 

Stockholm, F. (2006). Methods for uncertainty and sensitivity analysis: Review and 

recommendations for implementation in ecology. Eysicum, 5, 23 – 29. 

Tarantola, S. (2008). Global sensitivity analysis. John Wiley and Sons. 

Umoh, E.S. (2022). Mathematical Modelling Approach for the Sensitivity and 

Stability Analyses of Cholera Diseases in Aquatic Environment. M.Sc. Thesis 

submitted to the Department of Mathematics and Statistics, Ignatius Ajuru 

University of Education, Port Harcourt, Rivers State. 

WHO (2019). Cholera – World Health Organization. https://www.who.int/news-

room/fact-sheets/detail/cholera 

Wang, J. & Mondak, C. (2011). Modeling cholera dynamics with controls. Canadian 

Applied Mathematics Quarterly, 19(3), 255 – 273. 

Wang, X. & Wang, J. (2014). Analysis of cholera epidemics with bacteria growth and 

spatial movement. Journal of Biological Dynamics, 2, 23 – 31. 

http://dx.doi.org/10.1155/2013/721406
https://www.who.int/news-room/fact-sheets/detail/cholera
https://www.who.int/news-room/fact-sheets/detail/cholera

