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ABSTRACT 

 

The paper reviews a procedure for the general solution of certain types of quadratic 

equations. Earlier Eno D. John (2017) showed of a quadratic equation can be obtained 

through a process that reduces the equation into a difference of two squares for      
Under this review, we studied the implementation of the procedure when      
Examples are given at the end of this work to demonstrate the method. 
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1.0  INTRODUCTION 

 

The equation 

                                                                           
known as quadratic equation under certain conditions. 

is commonly associated with models of parabolic functions, Parent (2015), Aravind 

Narayan (2013), with the roots defined by the intersection of the curve with the  - axis 

of the function               Aside from quadratic equations being studied as a 

topic in mathematics, other areas of research in sciences considers it as a method of 

investigation of scientific experiments, , Parker (1977), Sergey (2006) 

Some of the methods employed for the solution of (1) can be seen in Stroud & 

Booth (2001), Nayak & Dash (2013), Rich and Schmidt (2004) which are: 

(i) Factorization 

(ii) Completing the squares 
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(iii) General formula 

(iv) Graphical method 

 

The general solution (iii) above of (1) is a solution of the form 

                            
   √ 

  
                                                                                        

where   is the discriminant defined by 

                                                                                                                         
From (1) and (3) 

if 

      equation (1) has complex roots 

                 equation (1) has real and distinct roots 

              equation (1) has real and equal roots 

Method (i) is employed when   is a perfect square and (ii) if   is not a perfect square. 

Equation (1) was studied under the assumption that      and a procedure developed 

for obtaining (2) using the method of difference of squares, Eno D. John (2017). It was 

shown that for any quadratic equation satisfying prescribed conditions, the method 

described here can be used to obtain its roots. 

 

In this paper, we consider (1) under the assumption       
 

In the following section, we shall give the propositions necessary for the construction 

of the solution of (1) with    . In section 3, the method developed in this paper shall 

be demonstrated with examples to illustrate the applicability of the method. 

 

2.0 Basic Propositions for the Method of Difference of Squares 

 

Proposition 2.1 

Let      for equation (1), if in addition      , then equation (1) will have a real 

root if and only if    . 

 

Proof: 

Let         , from (3), 

then for       

             

           
     and will remain positive if and only if     with (1) having real roots. 
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Proposition 2.2 

Let   be a perfect square, if √  is a factor of   then the expression        is 

factorizable as a difference of two squares. 

 

Proof: 

Let     and      for some integers     
then  

       

          

           

          

 *
 

 
 (

 

 
   )  + *

 

 
 (

 

 
   )+                                       

Choosing 
 

 
         

 

 
    

Equation (4) becomes 

           

        
 

Proposition 2.3 

Given equation (1) with     and    , then (1) can be expressed as difference of 

two squares. 

 

Proof: 

For    , (1) becomes 

            

Multiplying both sides of the equation by   

            

           

[
 

 
 (

 

 
   )  

 

 
] [

 

 
 (

 

 
   )]     

by Proposition 2.2. 

This means 

         
is equivalent to 
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with 

  
 

 
       

 

 
    

 

3.0 Implementing Method of Difference of Squares for Quadratic Equations  

 

From equation (1), let      then 

           

and 

           
Multiplying both sides by    

              

             

[
 

 
 (

 

 
   )] [

 

 
 (

 

 
   )]       

[
 

 
]
 

 [   
 

 
]
 

     

by proposition 2.2 and 2.3. 

[
 

 
   ]

 

 
  

 
    

      

 
 

   
 

 
  

√      

 
 

   
 

 
 

√      

 
 

  
  √      

  
                                  

For       for any number    

  
   √      

  
   

  √ 

  
                                

 

Example 3.1 

Determine the types of roots in the quadratic equation given by             
 

Solution 

     and since       

This equation has real roots by proposition 2.1. 
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Example 3.2 

Solve the equation              using the method of difference of squares  

 

Solution 

From              

| | is a perfect square and √| | is a factor of   

Thus, by propositions 2.2 and 2.3 

            

            
Thus, 

   [    ]     

      √   

  
  √  

 
 

 

Example 3.3 

Solve the equation             using the method of difference of squares 

 

Solution 

From             

| | is not a perfect square and √| | is not a factor of  . 

           

Multiplying both sides by 3 (coefficient of   ) 

             

             

hence,  

  
 

 
   

 

 
     

So 

      [
 

 
]

 

 [
 

 
   ]

 

 

and 

[
 

 
]

 

 [
 

 
   ]

 

     

[
 

 
   ]
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  √  

 
 

  
  √  

 
  

4.0 CONCLUSION 

 

The review of the earlier work was based on certain assumptions on  , noting that such 

assumptions are satisfied for a lot of quadratic equations as shown in the examples 

above. Any method chosen for the solution of quadratic equations must be subject to 

certain conditions on     ,   and  . The examples given in this work successfully 

established the earlier propositions stated in section 2. The extension of this work to 

higher polynomial equations is currently under consideration. 
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