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ABSTRACT
In the last couple of decades, mathematical models have been used to study the
transmission dynamics of Hepatitis B Virus (HBV) in various communities, regions
and countries. Therefore, this study aims at evaluating the effect of screening,
vaccination and treatment on the transmission dynamics of hepatitis B virus. A
mathematical model is designed to study the effects of carriers on the transmission
dynamics of Hepatitis B. The basic reproduction number is derived using the
next generation method. The local stability of the disease-free equilibrium state
is established via the basic reproduction number. Also, the local stability of the
endemic equilibrium state is proved using the centre manifold theory. It is revealed
that using item iv of theorem 1, the unique endemic equilibrium for model system
(8 – 12) exists and is locally asymptomatically stable whenever R

0
 > 1
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INTRODUCTION
Hepatitis B is a disease of the liver characterized by inflammation and is caused by infection
with hepatitis B virus (HBV) (White and Fenner, 1994). According to Abraham (2004),
Hepatitis B is one of the serious world’s health problems. World Health Organization’s
statistics show that about 2 billion people around the world have been infected with hepatitis
B virus and about 350 million live with chronic HBV infection (Kalajzievska and Li, 2011).
A published article by Odusanya et al (2011) also affirms that about 600,000 die each
year from HB-related liver disease or hepatocellular carcinoma.  Chronic carriers of HBV
form the main reservoir for transmission of HBV in any population that is endemic with the
virus infection. As pointed out in the article by Kalajzievska and Li (2011), about 30% of
people infected with HBV do not show symptoms.

These people are asymptomatic carriers. The two major interventions for the control
of HBV transmission are vaccination and treatment. However, as pointed out by Armbuster
and Brandeau (2010), a key public health challenge in managing chronic viral diseases,
HB alike, is identifying the infected, asymptomatic individuals so that they can receive
treatment. Individuals identified before symptoms develop typically derive greater benefit
from treatment than individuals who receive treatment only in an advanced stage of the
disease. Early management and treatment of chronic HBV infection can provide significant
health benefits for treated individuals and reduce prevalence at the population level. Since
a sizeable proportion of the HBV carriers is asymptomatic, treatment can be effective if
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the individuals can be screened for their HBV status from the nearby health centre. While
the susceptible individuals are vaccinated, the carriers are placed on treatment. The purpose
of this study is to evaluate the effect of screening, vaccination and treatment on the
transmission dynamics of hepatitis B. In the last couple of decades, mathematical models
have been used to study the transmission dynamics of HBV in various communities, regions
and countries. Anderson and May (1992) and Williams, Nokes, Medley and Anderson
(1996) presented models of sexual transmission of HBV, which include heterogeneous
mixing with respect to age and sexual activity. Edmunds et al (1993) studied the relation
between the age at infection with HBV and the progression to the carrier state. Medley,
Lindop,Edmunds and Nokes (2001) formulated a model to show that the prevalence of
infection is largely determined by a feedback mechanism that relates the rate of transmission,
average age at infection and age-related probability of developing carriage following
infection. Thornley, Bullen and Robert (2008) applied the model of Medley, Lindop,
Edmunds and Nokes (2001) to predict chronic hepatitis B infection in New Zealand.
Mclean and Blumberg (1994) and Edmunds et al (1996a) studied models of HBV
transmission in developing countries and Williams, Nokes, Medley and Anderson  (1996)
described a model of HBV in UK. Zou and Zhang (2009) proposed a mathematical
model to study the transmission dynamics and prevalence of HBV in mainland China.

Several mathematical models such as that of Anderson and May (1991),
Kalajzievska (2006), Kalajzievska and Li (2011) study the effects of HBV carriers on
transmission of HBV.  While Anderson and May (1991) used simple mathematical models
without control parameters, Kalajzievska (2006), Kalajzievska and Li (2011) applied
more general models. In this work, a mathematical model to study the effects of carriers
on the transmission of hepatitis B is proposed. The difference in our own model lies in the
model structure, specificity and control interventions applied. For instance, their models
do not capture the latent and acute stages of development of HBV infection. In our model
we have incorporated screening, vaccination and treatment parameters in combination as
a strategy.

Formulation of the Model Equations
In this study, we first formulate the model equations, compute the basic reproduction
number and prove the existence and stability of the disease-free equilibrium (DFE) and the
endemic equilibrium (EE) states. The following diagram will be found useful in formulating
the model equations.
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Fig.1: A flow diagram for the transmission of HBV
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From the above assumptions and the flow diagram the following equations are formulated
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Table 1: Model parameters
S(t) = Proportion of susceptible at time t
L(t) = Proportion of infected latent individuals at time t
I(t) = Proportion of infected acute individuals at time t
C(t) = Proportion of chronic carriers at time t
C

t
(t) = Proportion of carriers receiving treatment at time t

R(t) = Proportion of individuals recovered at time t
µ = The Birth Rate

= Proportion of unimmunized children
v = Proportion of infected new born babies to carrier at time t

= Natural Death Rate

= Transmission coefficient for the acute individuals

 = Transmission coefficient for the chronic carriers

ε = Infectiousness of a chronic carrier relative to an infected acute individual

 = Transmission coefficient for the carriers receiving treatment

1ε = Infectiousness of a carrier receiving treatment relative to an infected acute individual

ρ = Proportion of the non-newborn susceptible relative to the newborns

= Rate at which latent individuals move to the acute stage

= Rate at which infected acute individuals move to the carrier state

2γ = Rate at which infected acute individuals move to the recovered compartment
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1µ = HBV – Induced death rate for the chronic carriers

2µ = HBV -  Induced death rate for the carriers receiving treatment

π = Rate at which chronic carriers naturally recover

1π

= Rate at which carriers receiving treatment recover

α = Rate at which asymptomatic carriers naturally become symptomatic

1α

= Rate at which asymptomatic carriers are detected through screening

The Feasible Region and the Disease-free Equilibrium State

From equation 7,
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 The equation for R can be omitted in our analysis

since terms in R do not appear in other equations. Therefore, our model can be studied in
the feasible region given as follows:
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We shall first determine the disease-free equilibrium. Let E
0
 be the disease-free equilibrium

state of the model equations 1 - .7. At  E
0
, L = I = C = C

t
 = 0 so that from equation 1
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The Next Generation Method and the Basic Reproduction Number
In this section, we shall apply the next generation method to compute the basic reproduction
number for our model. The next generation method, introduced by Diekmann, Heesterbeek
and Metz  (1990) is a general method of deriving R

0
 in any situation in which the population

is divided into discrete, disjoint classes with multiple classes of infectious individuals. For
instance, this method can be seen in Van den Driessche and Watmough (2002), Heffernan
(2005), Ameh (2009) among others. We compute the basic reproduction number for our
model using the recipe by Van den Driessche and Watmough (2002) as follows.
Let F

i
(x) be the rate of appearance of new infections in compartment i = 1, …, m.

Let F(x) = (F
1
(x), (F

2
(x), …, Fm(x)).

Let )()()( xVxVxV iii
+− −= be the difference between outflow and inflow terms in

compartment i aside F
i
(x) where )(xVi

+  is the rate of transfer into compartment i by all

other means and )(xVi
−  is the rate of transfer of individuals out of the ith compartment.
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The difference F

i
(x) – V

i
(x) gives the rate of change of x

i
 in compartment i.
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It follows that the basic reproduction number is given by
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Local Stability of the Disease-Free Equilibrium (DFE) state
Using Theorem 2 in Van den Driessche and Watmough (2002), the following result is
established.
Lemma 1: The disease-free equilibrium of the HBV model system 1 - 5 is locally
asymptotically stable if R

0
 < 1 and unstable if R

0
 > 1.

Local Stability of the Endemic Equilibrium (EE) state
We shall employ the centre manifold theory described in Van den Driessche and Watmough
(2002) to investigate the local asymptotic stability of the endemic equilibrium. We make
the following transformation of variables in order to apply the centre manifold theory

S = x
1
, L = x

2
, I = x

3
, C = x

4
, C

t 
= x

5
 and R = x

6
.
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We now use the vector X = (x
1
, x

2
, x

3
, x

4
, x

5
, x

6
)T.

Then the model system (equation 1 - 6) can be expressed in the form
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We shall use model equations 8 - 12 to establish the local stability of the endemic equilibrium.
The Jacobian matrix of the system of equations 8 - 12 at the DFE is given by
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Choosing β  as a bifurcation parameter and considering the situation where R
0
 = 1 and

solving for β , we have
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The system of equations 8 - 12 with 0ββ =  has a simple zero Eigen value. Thus, we can
use the centre manifold theory to determine the behaviour of the system 8 - 12) near
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We shall apply the following theorem used in Mukandavire, Das, Chiyaka and Nyabadza
(2010) to establish local stability of the endemic equilibrium.

Theorem 1: Consider the disease transmission model defined by equation 8 – 12 with the

function ),,( φxf  φ  is the bifurcation parameter. Assume that the zero Eigen value of
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eigenvectors respectively. Assume that . Then, there exists 0>δ  such that

(i) If  0>b , when φ<0 with <1,  is locally asymptomatically stable,

and there exists a positive unstable equilibrium; when ,10 << φ   is unstable
and there exists a negative asymptomatically stable equilibrium;

(ii) If ,0<a  0<b , when <0 with <1,  is unstable; when 0<<1,  is asymptomatically
stable, and there exists a positive unstable equilibrium;

(iii) If  , when <0, with <0,  is unstable, and there exists a locally asymptomatically
stable negative equilibrium; when 0<<1,  is stable and a positive unstable equilibrium
appears.

(iv) If  , when changes from negative to positive,  changes its stability from stable to
unstable. Corresponding negative equilibrium becomes positive and locally
asymptomatically stable. From theorem 1 above, the computations of a and b are
done as follows:

buuvuuvuuva ,025121412312 <++= ββ

00152042032 >++= SuvSuvSuv εε
Thus, using item iv of theorem 1, the unique endemic equilibrium for model system (8 – 12)
exists and is locally asymptomatically stable whenever R

0
 > 1.

CONCLUSION

In this work, a mathematical model  is proposed to study the effects of carriers on the
transmission dynamics of hepatitis B. The dynamics is described by a system of first order
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ordinary differential equations of autonomous type.  The basic reproduction number as a
threshold is derived and the existence and local stability of both the disease-free and
endemic equilibria are established.
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