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ABSTRACT

In the last couple of decades, mathematical models have been used to study the
transmission dynamics of Hepatitis B Virus (HBV) in various communities, regions
and countries. Therefore, this study aims at evaluating the effect of screening,
vaccination and treatment on the transmission dynamics of hepatitis B virus. A
mathematical model isdesigned to study the effects of carrierson the transmission
dynamics of Hepatitis B. The basic reproduction number is derived using the
next generation method. The local stability of the disease-free equilibrium state
is established via the basic reproduction number. Also, the local stability of the
endemic equilibrium stateis proved using the centre manifold theory. It isrevealed
that using itemiv of theorem 1, the unique endemic equilibriumfor model system
(8 —12) exists and is locally asymptomatically stable whenever R > 1

Keywords: Hepatitis B, mathematical model, basi ¢ reproduction number, disease-
free equilibrium state, endemic equilibriumstate, stability centre manifold theory.

INTRODUCTION

HepatitisB isadiseaseof theliver characterized by inflammation andiscaused by infection
with hepatitis B virus(HBV) (White and Fenner, 1994). According to Abraham (2004),
HepatitisB isone of the seriousworld’s health problems. World Health Organization’s
datisticsshow that about 2 billion peoplearound theworl d have been infected with hepatitis
B virusand about 350 million livewith chronic HBV infection (Kalgzievskaand Li, 2011).
A published article by Odusanyaet al (2011) also affirmsthat about 600,000 die each
year from HB-related liver disease or hepatocel lular carcinoma. Chronic carriersof HBV
formthemain reservoir for transmission of HBV inany populationthat isendemicwiththe
virusinfection. Aspointed out inthearticleby Kalgzievskaand Li (2011), about 30% of
peopleinfected with HBV do not show symptoms.

Thesepeopleareasymptomatic carriers. Thetwo mgor interventionsfor thecontrol
of HBV transmiss on arevaccination and trestment. However, aspointed out by Armbuster
and Brandeau (2010), akey public health challengein managing chronic viral diseases,
HB alike, isidentifying theinfected, asymptomatic individual s so that they can receive
treatment. Individual sidentified before symptomsdevel op typically derive greater benefit
from treatment than individual swho receive trestment only in an advanced stage of the
disease. Early management and trestment of chronic HBV infection can providesignificant
health benefitsfor treated individua sand reduce prevalence at the popul ation level . Since
asizeable proportion of the HBV carriersisasymptomatic, treatment can be effectiveif
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theindividualscan be screened for their HBV statusfrom the nearby health centre. While
the susceptibleindividua sarevaccinated, the carriersare placed on trestment. The purpose
of this study isto evaluate the effect of screening, vaccination and treatment on the
transmission dynamicsof hepatitisB. I nthelast coupleof decades, mathematical models
have been used to sudy thetransmission dynamicsof HBV invariouscommunities, regions
and countries. Anderson and May (1992) and Williams, Nokes, Medley and Anderson
(1996) presented models of sexual transmission of HBV, whichinclude heterogeneous
mixing with respect to ageand sexud activity. Edmundset al (1993) studied therelation
between the age at infectionwith HBV and the progressionto the carrier state. Medley,
Lindop,Edmundsand Nokes (2001) formulated amodel to show that the preval ence of
infectionislargely determined by afeedback mechanismthat ratestherate of transmission,
average age at infection and age-rel ated probability of devel oping carriagefollowing
infection. Thornley, Bullen and Robert (2008) applied the model of Medley, Lindop,
Edmunds and Nokes (2001) to predict chronic hepatitis B infectionin New Zealand.
Mclean and Blumberg (1994) and Edmunds et al (1996a) studied models of HBV
transmission in devel oping countriesand Williams, Nokes, Medley and Anderson (1996)
described amodel of HBV in UK. Zou and Zhang (2009) proposed a mathematical
model to study thetransmission dynamicsand prevalenceof HBV inmainland China

Several mathematical models such as that of Anderson and May (1991),
Kalagjzievska (2006), Kagzievskaand Li (2011) study the effectsof HBV carrierson
transmission of HBV. WhileAnderson and May (1991) used s mplemathematical models
without control parameters, Kalgjzievska (2006), Kalgzievskaand Li (2011) applied
moregeneral models. Inthiswork, amathematical model to study theeffectsof carriers
onthetransmission of hepatitisB isproposed. Thedifferencein our ownmodd liesinthe
model structure, specificity and control interventionsapplied. For instance, their models
do not capturethelatent and acute stages of development of HBV infection. In our model
we haveincorporated screening, vacci nation and trestment parametersin combination as
astrategy.

Formulation of theM odel Equations

In thisstudy, wefirst formulate the model equations, compute the basic reproduction
number and provethe existence and stability of thedisease-freeequilibrium (DFE) andthe
endemicequilibrium (EE) states. Thefollowing diagramwill befound useful informulating
themodd equations.
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Fig.1: Aflow diagramfor thetransmission of HBV
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From the above assumptionsand theflow diagram thefollowing equationsareformul ated

ds
e Hw(1-VC) - (1-w)pS— (4, + f1+ BC+ BC)S 1
dL
m = wac+ B+ BC+B,C)S-(u,+o)b 2
d _
a—oL—(yo+y2+ vL)r 3
?j—ct: =y1-(u,+y+m+a+a)c 4
dC

L= (a+a)C— (gt 1, +m)C, 5
drR
o A+t pS+pl+C+mC-,R - 6

Let N(t) bethetotal population at timet, then
N(t) = (1) + 1(5) + C(H) + C + R(1)

dN

E: H=UN-pC+uC<pu-4N 7

Table 1. Model parameters

St) = Proportion of susceptible at timet

L(t) = Proportion of infected latent individuals at time't
1(t) = Proportion of infected acuteindividuals at timet
C(t) = Proportion of chronic carriersat timet

C = Proportion of carriersreceiving treatment at timet
R(t) = Proportion of individualsrecovered at timet

y7i = TheBirth Rate

Proportion of unimmunized children
% = Proportion of infected new born babiesto carrier at timet

= Natural Death Rate

= Transmission coefficient for the acute individuals
= Transmission coefficient for the chronic carriers
& = Infectiousness of achronic carrier relative to an infected acute individual
= Transmission coefficient for the carriersreceiving treatment
£, = Infectiousness of acarrier receiving treatment relativeto an infected acuteindividual

P = Proportion of the non-newborn susceptible relative to the newborns
= Rate at which latent individuals move to the acute stage

= Rate at which infected acute individuals move to the carrier state

Y, = Rate at which infected acute individuals move to the recovered compartment
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A = HBV —Induced death rate for the chronic carriers

U, = HBYV - Induced death rate for the carriers receiving treatment

7 = Rate at which chronic carriers naturally recover
= Rate at which carriersreceiving treatment recover

a = Rate at which asymptomatic carriers naturally become symptomatic
= Rate at which asymptomatic carriers are detected through screening

TheFeasible Region and the Disease-free Equilibrium Sate

Fromequation 7,

let dN =H - :uoN

Therefore, N(t) = ﬂio + ke o
Thisimpliestha N(t) - £ ast - o

Therefore, lim sup ., N(t) < #io Theequation for R can beomittedin our analysis

sincetermsin Rdo not appear in other equations. Therefore, our model canbestudiedin
thefeasibleregiongivenasfollows:.

D ={(S,L,1,C,C)eR4S+L+1 +C+C, < £}
Weshdll first determinethe disease-freeequilibrium. L et E bethedisease-freeequilibrium
state of themodel equations1-.7.At E,,L=1= C= C =0sothat fromequation 1
Thisimpliesthat S= S, = —4-

(1-w)p+

Therefore, E, = (S, Ly, I, C,) C) = (=t Mo 00 00)

TheNext Generation M ethod and the Basic Repr oduction Number
Inthissection, weshd| apply the next generation method to computethe basi c reproduction
number for our model. Thenext generation method, introduced by Diekmann, Heesterbeek
and Metz (1990) isagenera method of deriving R inany situationinwhichthe population
isdividedinto discrete, digoint classeswith multiple classesof infectiousindividuas. For
instance, thismethod can be seen in Van den Driessche and Watmough (2002), Heffernan
(2005), Ameh (2009) among others. We compute the basi ¢ reproduction number for our
model using the recipe by Van den Driessche and Watmough (2002) asfollows.

L et F (x) betherate of appearance of new infectionsin compartmenti=1, ..., m.

Let F(x) = (F,(x), (F,(), ..., Fm(x)).

Let V. (x) =V.”(x) — V,"(x) be the difference between outflow and inflow termsin
compartment i asideF,(x) where V" (x) istherate of transfer into compartment i by all

other meansand V,” (x) istherateof transfer of individualsout of theith compartment.
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Let V(x) = (V,(X), V,(X),...,Vm(X))
ThedifferenceF (x) —V.(X) givestherate of change of x in compartment i.

From our modd
pvax+(B +BC+BCS
_ 0
F(X)_ 0
0
0 S ww+BS, BS
|0 O 0 0
FO. = o o 0 0
0O O 0 0
(L + o)L
V(X): _0L+(:uo+y1+y2)|
_yll +(/.10+/,11+7T+0’+0’1)C
—(a+a))C+ (U + 1, +11)C,
My O 0 0 0
V(x), = 0 thnt), 0 0
" 0 ~A Kt +tmtata, 0
0 0 _(a+al) (/'Io+/'12+ﬂ1

3 =PSSO+ g+ mrra+a)(py + fy + 75) + .o (Nwt BS) (U, + 1, + ) +yio(a+a,) B,S,
(s +OYhy Vi + V) + 1+ TTH O +0) (U, + 1, +TT)
It followsthat the basic reproduction number isgiven by

_BS(UO+p +rra+a,) (U, + Hy + T5) + Yo (vt BS)) (U, + H, + 1) +y,0(a +a,) 3,S,
(o + )y Yy 4V, )l + iy + 1T+ a0, ) (U + 1, + 7T)

R,

L ocal Sability of the Disease-Free Equilibrium (DFE) state

Using Theorem 2 in Van den Driessche and Watmough (2002), thefollowing resultis
established.

Lemma 1: The disease-free equilibrium of the HBV model system 1 - 5islocally
asymptoticaly stableif R < 1and unstableif R > 1.

L ocal Sability of theEndemic Equilibrium (EE) state

Weshal employ the centremanifold theory described in Van den Driesscheand Watmough

(2002) to investigate thelocal asympitotic stability of the endemic equilibrium. We make

thefollowing transformation of variablesin order to apply the centremanifold theory
S=x,L=x,1=%x,C=x,C=xandR=x.
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We now use the vector X = (X, X,, X5, X,, X, X.)".
Thenthemodel system (equation 1 - 6) can beexpressedintheform

%—f (f, f,, 5, f4, f5, f6)T suchthat the model system 1 - 6 become

ddX1 = H(1-Vx,) = (L— ) X, = (U + BXs + BiXs + BoXs) XL oo 8
d(;f[z SINGK, + (B + BiXy+ BoX )X = (U T O)Xy e, 9
%: O = (o ¥ VitVo)Xs 10
%: ViXe=(Uo ¥ ML +TTHA HA )X, e 11
%: (@+a)X, —(HoH L+ TT)Xs 12
%: A=) px + Vo Xa TR, +TEXs = [oXs s 13

Weshdl ussmode equations8- 12 to establishthelocd stability of theendemicequilibrium.

p=p= (1o + o) (s + VT i/ bt ITIX SRSy SténToF.equaBNe 8L 1274t tHeDFE isgiven by
Sy (U +pty *Tra+a,)((, + p, +75) +y,0(S,) (U, + 1, +75) + y,0(a +a,)€,S,

_[/Jo +(1 a))p] 0 :5 _/'Nw 181 () _18280
0 _(,Uo +U) &o Ww+ 181 o ﬂzso
J(Eo): 0 0 _(:uo+y1+y2) 0 0
0 0 i _(/'10+/'11+ﬂ+a+al) 0
0 0 0 (0’+0’1) _(:uo+:uz+ﬂ2

Choosing g asabifurcation parameter and considering thesituationwhere R = 1 and
solvingfor B, wehave

Thesystem of equations8- 12 with g=43° hasasimplezero Eigen value. Thus, wecan
use the centre manifold theory to determine the behaviour of the system 8 - 12) near
B=pB°. Theleft eigenvector v =(v,,v,,v,v,,v,)" of J(E,) isgiven by
(4, + o)V,

ag

v,=0,v, =v, >0,v, =

S50 J(uo +o)N,

1
V,=—| u +y +
4 y[OKVZ ( +)

1
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ﬁ1 SV,

5

(U + 4, )
Theright Eigen vetor u=(u,,u,,u,,u,,u,)" of J(E) isgiven by
u, :M'u2 =u, >0,u3 :L,
[, + A+ )V Hy+ Y+,
- OViH, oy(a-a)u,

u, =

(o + Vit V)t H A T a4 a) (o + 1+ T+ o+ V)t ¥ TTH G+ )
Weshdl apply thefollowing theorem used in Mukandavire, Das, Chiyakaand Nyabadza
(2010) to establishloca stahility of the endemic equilibrium.

Theorem 1: Consder thediseasetransmission modd defined by equation 8—12 withthe
function f(x,¢), ¢ isthebifurcation parameter. Assumethat the zero Eigen value of
issmple. Let

2 2

n a fk _ n a f
a= 2 vl (En0), b= 2 v o —HE0): v and  aretheleft and right
T «Ux T xi Vg

elgenvectorsrespectively. Assumethat . Then, thereexists § > Q suchthat
(0] If b >0, when ¢ <Owith <1, islocalyasymptomaticaly stable,

and thereexistsapositive unstable equilibrium; when 0 < ¢ <1, isunstable
and thereexistsanegative asymptomatically stableequilibrium;

(i) If a<0, b<0,when<Owith<1, isunstable; when 0<<1, isasymptomaticaly
stable, and there existsapositive unstable equilibrium;

(i) If ,when <0, with <0, isunstable, and there existsalocally asymptomatically
gablenegativeequilibrium; when 0<<1, isstableand apostiveungableequilibrium
appears.

(iv) If , when changesfrom negativeto positive, changesitsstability from stableto
unstable. Corresponding negative equilibrium becomes positive and locally
asymptomatically stable. From theorem 1 above, the computationsof aandb are
doneasfollows:

a=Vv,uU; +v,uu, B +v,uus3, <0,b
=VU S +V,U,ES + VU6, >0
Thus, usngitemiv of theorem 1, the unique endemic equilibriumfor modd system (8—12)
existsandislocally asymptomatically stablewhenever R > 1.
CONCLUSION

Inthiswork, amathematical model isproposed to study the effectsof carriersonthe
transmission dynamicsof hepatitisB. Thedynamicsisdescribed by asystem of first order
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ordinary differential equationsof autonomoustype. Thebasi ¢ reproduction number asa
threshold isderived and the existence and local stability of both the disease-freeand
endemic equilibriaare established.
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