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ABSTRACT 
A mathematical technique was advanced for investigating the normal stress 

distribution failure of soil foundations. The stability equations were obtained using the 

limit equilibrium (LE) conditions. The additions of vertical, horizontal and rotational 

equilibria were transformed mathematically with respect to the soil shearing strength, 

leading to the derivation of the equation of the functional Q, and two integral 

constraints. In the mathematical method employed, the stability analysis was 

transcribed as a minimization problem using the calculus of variations. Generally, no 

constitutive law beyond the Coulomb's yield criterion was incorporated in the 

formulation; consequently, no constraints are placed on the character of the criticals 

except the overall equilibrium of the failing soil section. The critical normal stress 

distribution, min, and consequently the load, Qmin, determined as a result of the 

minimization of the functional are the smallest stress and load parameters that can 

cause failure. In other words, for a soil with strength parameters c, ø, ૪, and footing 

with geometry B, H, when stress  < min (c, ø, ૪, B, H) and load Q < Qmin (c, ø, ૪, 

B, H) foundation is stable. Otherwise, the stability would depend on the constitutive 

character of the foundation soil. In the mathematical method employed, the stability 

analysis is transcribed as a minimization problem using the calculus of variations. 

Key Word: Cohesion, Internal Friction, Vertical load, Stress distribution, Rupture 

surface, Shear stress, Failure, Coordinate transformation, Polar coordinates. 

 

 

INTRODUCTION 

Many of the problems encountered in soil Mechanics and Foundation Engineering 

Designs are the extreme-value type. These problems include the stability of slopy soil, 

the bearing capacity of foundations both on horizontal, adjacent to slopy soil and on 

slopy soil, the limiting forces (active-Pa and passive Pp) acting on retaining structures 

like retaining walls, dams, sheet pile walls and others. All problems of the types 

mentioned above can be solved within the framework of the limiting equilibrium (LE) 

approach. This approach which considers the overall stability of a "test body" bounded 

by soil surface [y(x)] and slip surface [y(x)] according to Akubuiro (1991) is based on 

the following three concepts.  
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(a) Satisfaction of failure criteria S = f() along the slip surface, y(x) over which 

)(x  and (x) constitute the shear and normal stresses distribution. 

(b) Satisfaction of all equilibrium equations for the test body (vertical, horizontal 

and rotational equilibria).  

(c) Extremization of the factor S with respect to two unknown functions y(x) and  

(x). Thus S is considered to be function of these (y (x) and  (x) functions.  

The extreme value Sex is defined as: 

  1.1)(,)(  xxySExtrSex   

 However, the determination of the bearing capacity of soil and associated 

critical rupture surface and normal stress condition along the surface remains one of the 

most important problems of engineering soil mechanics. Several approaches to this 

problem have evolved over the years.  

 One of the early sets of bearing capacity equations was proposed by Terzaghi in 

1943. These equations by Terzaghi used shape factors noted when the limitations of the 

equation were discussed. These equations were produced from a slightly modified 

bearing capacity theory developed by Prandtl in 1920 from using the theory of 

plasticity to analyze the punching of rigid base into a softer (soil) material (Bowles, 

1997; Chukwueze, 1990). Another method which has been widely used though equally 

misleading involves the determination of the bearing capacity by the plate loading test 

at a given work site.  

 Accordingly, Prandtl identified zones in the metal at failure as follows:  

 (a) A wedge zone under the loaded area pressing the material downward 

 as a unit.  

 (b) Two zones of all-radial failure planes bounded by a logarithmic spiral 

 curve.  

 (c) Two triangular zones forced by pressure upward and outward as two 

 independent units.  

Although efforts were made by Hansen, Meyerhorf, Vesic and many other researchers 

(Garg, 2005) to present more encompassing and dependable solution, it was Terzaghi 

(Bowles, 1997) who developed the first rational and practical approach to this problem. 

The method involves three determinant factors:  

 (a) the soil unit weight, r.  

 (b) the effect of surcharge, q or applied load Q.  

 (c) the strength parameters of the soil, therefore, it is more comprehensive 

 than any other approach before it.  

Meyerhoff (1951), Bowles (1997), Garg (2005), Smith G. and Smith Ian (1998), Feda 

(1961), Terzaghi and Peck  (1948), Terzaghi (1943) had also obtained by a technique 

similar to that of Terzaghi's approximate solutions by including shape and depth factors 

for plastic equilibrium of footing by assuming failure mechanism, and like Terzaghi 

expressed results with bearing capacity factors.  

 Hitherto, none of the above two parameters has been mathematically quantified 

and so bearing capacity calculations have been based on various assumed rupture lines 

and normal stress distributions. The existing methods therefore, differ from one another 

in the assumptions about the character of the functions y(x) and Most of the 
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assumptions are motivated by the available plasticity solutions for idealized cases. The 

resulting solutions, therefore, contain errors of unknown magnitude.  

 This work therefore attempts to further advance the solution to the stability 

problem by formulating the stability equations using the limiting equilibrium 

conditions, transcribing the problem as a minimization problem in the calculus of 

variations and then determining the normal stress distribution along the failure surface 

with the basic assumption that the foundation is on a slope. With the normal stress 

distribution at failure and the rupture surface mathematically defined, so far, the 

determination of the bearing capacity of soil and associated critical rupture surface and 

normal stress condition along the surface remains one of the most important problems 

of engineering soil mechanics. However the objective of this research work is to 

basically determine the critical stress distribution along this plane of failure by 

employing a more mathematical approach to finding solutions to this problem.  

 

Basic Principles of Variational Calculus 

 The calculus of variations deals with the problem of maxima and minima 

(Swokowski, 1991 and Elsgolts, 1977). But while in the ordinary theory of maxima and 

minima, the problem is to determine those values of the independent variables for 

which a given function of these variables takes a maximum or minimum value, in 

calculus of variations, definite integrals involving one or more unknown functions are 

considered and it is required to determine those unknown functions that the definite 

integrals shall take a maximum or minimum value (Pars 1962; Pipes and Harvill 1971). 

The definite integrals here are called functionals.  

 

The Euler-Lagrangian Equation  

The basic thrust of the Euler-Lagrangian equation is stated in analytical terms as 

Elsgolts (1977). Given that there exists a twice differentiable function Y = y(x) 

satisfying the conditions y(x1) = y1, Y(x2)  =  Y2,  and which renders the functional 

1.2),,( 12

1

  dxyyxfJ
x

x
 

a minimum, what is the differential equation satisfied by y(x)? The constants x1, x2,  y
1
, 

y
2
 are supposedly given and f is a function of the arguments x, y, y

1
 which is twice 

differential with respect to any, or any combination of them (Robert,1952).  

 We denote the function that extremizes equation (2.1) by y(x) and proceed to 

form the one parameter family of “comparison” functions y( , x) defined by; 

2.2)(),(),(  xxoyxY   

Where )(x  is an arbitrary differentiable function for which 

3.20)()( 21   x  
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and   is the parameter of the family. Now replacing y and Y
1
 in Equation 2.1 by y(x) 

and y
1
(x) respectively, we form the integral 

 4.2),,( 12

1

  dxyyxfJ
x

x
 

where for a given function η(x), the above integral is clearly a function of the parameter 

α.  

The argument Y
1
 is given, through equation 2.2 by 

5.2)(),(),( 1111  xxoYxYY   certainly, the integral Equationn 2.4 is 

minimum at α = o and is equivalent to replacing Y and Y
1
 respectively with Y(x) and 

Y
1
(x). Also from elementary calculus (Stroud, 1995) the necessary condition for a 

minimum is that the vanishing of the first derivative of J with respect to α must hold for 

α = o, thus; 

 

7.2

,,

6.2)(

1

1

1

1

1

1

2

1

2

1

2

1

























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
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







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



















dx
Y

f

Y

f

dx
Y

Y

Fy

y

f

dxxyyf

J
J

x

x

x

x

x

x










 

Since setting α = 0 is equivalent to replacing (Y, Y
1
)  by (Y(x),  Y

1
(x) ), we have 

according to equation 2.7,  

8.20)( 1

1

1 2

1


















  dx

Y

f

Y

f
oJ

x

x
  

 Integrating by parts, the second term in the integral we obtain 

9.2)( 1

1

2

1
1 2

1





























  dx

Y
f

dx

d

Y
f

x

x

Y
f

oJ
x

x
  

As a result of equation 2.3 
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11.20
0

)0(

10.20
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













dx
Y

f

dx

d

Y

f
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x

x

Y

f

x
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 The only way the above equation 2.9 can equal zero since (x) is zero only at end 

points is for the function.  

  12.201 















Y
f

dx

d

Y

f
 

This is the Euler-Lagrangian differential equation which is the necessary 

condition for the function J to have an extremum.  

 

Basis for Parametric Representation  

 We proceed to show, however, that the extremizing relationship between a pair 

of variables x and y is the same, whether the solution is derived under the assumption 

that Y is a single-valued function of x or that a more general parametric representation 

is required to express the relationship between x and y. This we do by showing that the 

solution of the Euler Lagrange equation derived on the basis of the assumption of the 

single-valuedness of Y as a function of x satisfies also the system of Euler-Lagrangian 

equation derived on the basis of the parametric relationship between x and y 

(Meyerhoff, 1951).  

 Under the assumption that Y is a single – valued function of x, the functional to 

be minimized is given as recalled 

   13.2),,( 12

1

  dxYyxfJ
x

x
  

where y is required to have the values Y1 and Y2 at x = x1 and x = x2 respectively. If 

instead we use the parametric representation x = x(t) and y = y(t), where x(ti) = xi, y(ti) 

= yi for i =1, 2, the integral (2.13) is transformed through the relationships.  
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16.2,,

15.2

14.2

2

1

1


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



 dtx
x

y
yxfJ

dtxdx

x

y
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t

 

But the Euler-Lagrangian equation corresponding to equation 2.13 is  

17.20
1



















y

f

dx

d

y

f
 

 The system of Euler-langrangian equations associated with e.g. 2.16 is, if we 

write.  

21.20

20.20

19.2

18.2),,(),,,(

1

1


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

y

g

dt

d

y
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g
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d

x

g

x
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Y

xyyxfyxyxg

 

From equations 2.18, 2.19, 2.20, we obtain  

23.2

22.2

1

1

21

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f
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x
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From equation 2.15, we have, after substituting in 2.22, and 2.23  
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 Furthermore, differentiating equations 2.18 and 2.19 gives:  
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1
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Thus, according to equations 2.14 and 2.15 

 27.2
1


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f
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d
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y

g
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d
  

combining the above result with 2.25; and 2.24 with 2.22 gives the following pair of 

equations:  

29.2

28.2

1

1
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From this result, we conclude that any relationship, single-valued or not, that 

satisfies the Euler-Lagrangian Equation 2.13 derived on the basis of an assumed single-

valued solution y = y(x) – satisfies also the system of equation 2.20 which derivation 

requires no assumption of single valuedness of y as a function of x.  

 

MATHEMATICAL DERIVATIONS AND SOLUTION  

A shallow strip foundation of width B is buried in a sloppy soil mass at a depth H as 

shown in fig. 3.1.  

 

 

 

 

 

 

 

 

 

 

 

B 

H 

Q 

Fig. 3.1: Foundation buried in slopy soil mass  
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The soil mass is of semi-infinite extent and is homogeneous and isotropic. It has 

an effective unit weight r, and shear strength parameters C and ø (the cohesion and 

angle of internal friction respectively).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2: Calculation scheme (S = arc length along y(x) and θ = tan
-1

 (dy/dx) 

A mass of soil such as the one in fig. 3.2 is considered to be in a state of limiting 

equilibrium if:  

(1) Coulomb’s yield condition is satisfied along a potential rupture line Y(x) that 

smoothly connects one edge of the footing to the ground surface, thus 

 1.3tan)()(   xCx  

where τ(x) and σ(x) are the shear and normal stress distributions along Y(x) 

respectively.  

(2) The three equations of equilibrium-vertical, horizontal and rotational 

equilibrium-are satisfied for the sliding mass, thus:  

(a) For vertical equilibrium, we have: 





n

i

Fiv
1

2.30  

For vertical component of an equivalent force Fi which replaces the system of n forces 

in fig. 3.2. Resolving therefore all forces in the vertical direction and summing for 

vertical equilibrium, we have  

B 

Xo Q-qBcosβ 

 

X1 

y(x) 

y 

૪H = q 

(a) 

β 

θ 

τ 

σ 

S(x) 

x 
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In the limit ds   0  as x  0, we have  

 

 

 

On simplification, we have  

 

 

 

(b) Similarly, for horizontal equilibrium,  





n

i

ihF
1

6.30  

Fih = horizontal component of force Fi. Resolving all forces horizontally, we have  

 



n

i

sd
1

7.30cossin   

In the limit as ds  0, we have  

  8.30cossin  s
s

d  

(c) For rotational equilibrium, we have  





n

i

iM
1

9.30  

 



n

i

n

i

n

i

yFihxFiv
111

.. ૪y.x dx 





n

i 1

૪ 10.30. dxxH  

 

In the limit dx   0, ds  0, then  

  



s

n

i

dsqBQ
1

cosσsinτcos  ૪ydx  +   ૪ 0xi dH     ----3.3 

 cosqBQ 
s

  cosσsinτ  ds + 
1X

X o

 ૪y dx + 
1X

X o

 ૪Hdx  = 0 -------------3.4 

 cosqBQ 
s

  cosσsinτ  ds + 
1X

X o

 ૪(y + H)dx  = 0 -------------3.5 

 cosqBQ 
s

  cosσsinτ  ds + 
1X

X o

 ૪y dx + 
1X

X o

 ૪Hdx  = 0 -------------3.4 
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     s
s

dxy  cossinsincos   


1

0

X

X
૪   11.30  xdxHy  

in which  X0 and X1 are the end points y(x), s = the arc length along y(x) and α  arc tan 

(dy/dx).  

From equation 3.5,  

   
1

0

cossincos
X

X
s

s
dqBQ  ૪ ,0)(  xdHY   

we have on rearrangement  

   
1

0

cossincos

X

X

s
s

dqBQ  ૪   12.3 xdHy  

In the limit as dQ  Qmin, it is intended to determine the equation of the function σ(x), 

the critical normal stress distribution without any prior assumption. In fact, the 

functions realizing the minimizing Q are those of y(x) and σ(x). If y(x) the rupture 

surface is taken as a logarithmic spiral curve, the present problem could be restated 

thus: Find the equation of the critical normal stress distribution σ(x) along y(x) and 

which realizes the minimum value of the functional Q defined by the integral equation 

3.12 and subject to two integral constraint equations 3.8 and 3.11.  

 If the appropriate expression for σ(x) is determined, that coupled with that for 

y(x), it is therefore possible to easily use equation 3.12 to determine minimum Q (i.e. , 

the critical Q) identified with the bearing capacity.  

Since both the Coulomb’s yield criterion and the equilibrium conditions are 

simultaneously satisfied, we proceed thus:  

Substitute equation 3.1 into equations 3.5, 3.8 and 3.11, we have  

(a) For equation 3.5,  

   s
s

dxxcqBQ  cos)(sintan)(cos    


1

0

X

X

૪   13.3)(  xx dHy  
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Making Q the subject of formula, and letting ψ = tan  , the frictional coefficient of the 

soil, we have,  

   s
s

dcqBQ  cossincos    


1

0

X

X

૪   14.3 xdHy  

(b) For equation 3.8,   

 

 











tan

tan

0cossin

forc

cBut

dx
s

  

  

   16.30coscossin

15.30cossin









s
s

s
s

dc

dc




 

(c) For equation 3.11,  

 

17.30)(

)cossin()sincos(

1

0









x

X

X

s
s

dHyxy

dy 

 

      xcyc
s

 cossintansincostan   


1

0

X

X

sd ૪x 18.30)(  xdHy  

But ψ = tan ,  

       sd

s
xcyc  cossinsincos   


1

0

X

X

૪x 19.30)(  xdHy  

On rearranging, we have  

       s
s

dxcyCosc  sinsincossincos 


1

0

X

X

૪x 20.30)(  xdHy  
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The foregoing formulation contains five parameters of the problem – C,  , ૪, 

B, H. In the following sections, a parametric transformation shall be carried out using 

non-dimensional quantities to reduce the number of problem parameters, a design to 

give series of advantages in both the construction of the solution and the presentation of 

the results.  

 

Fundamental Assumptions  

(i) The soil mass under study is homogenous and isotropic. That is to say that the 

properties of any soil element are assumed the same as the properties of the 

whole soil mass, irrespective of location or orientation of the soil element. 

(ii)   Coulomb’s law is strictly valid;  

 21.3tan   c  

(iii) On the imminence of failure, the failure mechanism satisfies the basic 

conditions of equilibrium thus vertical, horizontal and rotational simultaneously. 

(iv)  Failure of foundation is assumed to take place by the general shear mode and is 

characterized by the existence of well defined failure pattern which consists of 

footing to the ground surface. Failure is then accompanied by substantial 

rotation of the foundation and the final soil collapse occurs only on one side of 

the foundation.  

(v) The ground surface is assumed to be slopy and the overburden pressure at 

foundation level is equivalent to a surcharge load q
1

o = γH cos β. 

(vi) The load exerted on foundation is assumed to be vertical and symmetrical. 

 

Boundary Conditions  

  Variational problems deal with two types of boundary conditions:  

(a) Fixed and points such as ox  (fig. 3.2) 

(b) End points that can slide along a prescribed curve. Their position is determined 

in such a way as to assume an external value of the functional. Since such points 

are not known in advance, a variational boundary condition known as the 

transverslaity condition has to be satisfied. 

 

For the general shear mode of failure, the function y(x) has to satisfy the 

following end conditions in order to comply with it:  

23.30)(

22.30)(

00

12





xxyy

xxyy
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Using these conditions, we simplify the following expressions thus:  

 

     27.30

26.3

25.3

24.3

01

0

1

1

1

0

1

0

1

0













xxyxxy

x

x
y

yd

xd
xd

yd
xdy

x

x

x

x

x

x

 

29.3

28.30

1

0

1

0

1

0

1

1









xd
xd

yd
yxdyy

Similarly

xdy

x

x

x

x

x

x

 

  31.3

30.3

0

1

2

2
1

1

0



 

x

x

y

ydy

x

x

 

    

33.30

32.30
2

1

1

0

2

1

2

1

0





 xdyy

xxyxxy

x

x

 

Finally, with regard to the parent problem, we notice that the location of the end 

points X1 is not known in advance. This therefore demands of us to now apply the 

condition of transversality. In this particular case, the appropriate form of this condition 

is given as: (Swokowski, 1991)   

  35.3ˆ

34.30

11

1
1

1

1

1
























xxwhere

xx

s

y

s
yS





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Non-dimensional Parametric Representation  

 To appropriately reduce the problem parameters to analytically manageable 

number and hence advantageously construct the solution, it is most convenient to 

introduce a set of non-dimensional parameters.  

 Define therefore the non-dimensional parameters as follows:, (32)  

 

 

 

 

 

 

 

 

 

 

 The problem is now presented in terms of c, σ and Q. Now from the geometry 

of the rupture surface (fig. 3.2), it is easy to see that  

42.3tan

41.3
cos

1









dx

dy
y

dx
ds

 

From the definition of the non-dimensional parameters  

44.3,,  BHHByyBxx  

cc  ૪ σσ ,B  ૪ QQB ,  2B ૪ 46.3  

The parameters are then used to transform the problem equations 3.14, 3.16, and 3.20 

as follows, (a) for equation 3.14, we have  

Q  ૪   dsSinCCosHb
s

   sincos  


1

0

x

x

૪  dxHy    

36.3,, 
B

H
H

B

y
y

B

x
x  

37.3,,
21


B

Q
Q

BB

c
c




 

38.3ˆ  HcH
B

c
c   

39.32
2

ˆ  H
B

H

B



  

40.32
2ˆ

2
 HQ

B

H

B

Q
Q  

૪ ૪ ૪ 

૪ 

૪ 

૪ 
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Introducing the appropriate parameter equations 3.44 and 3.46, we have  

૪ QB2  ૪   
1

0

cos

x

x

HBB      c  sincos  ૪ sinB  


1

0
cos

x

x

dx


 ૪   47.3 dxBHBy  

૪ QB2  ૪ cos2HB  ૪   



cos

sinsincos
1

0

dx
cB

x

x

  

-૪   48.3
1

0

 dxHyB

x

x

 

  49.3 xBdBxddxBut  

Substituting 3.49 into 3.48  

૪ QB2  ૪ cos2 HB  ૪   



cos

sinsincos
1

0

2 xd
cB

x

x

  

-૪   50.3
1

0

2  xdHyB

x

x

 

Diving although by rB
2
, we have  

  

  51.3

cos
sinsincoscos

1

0

1

0









xdHy

xd
cHQ

x

x

x

x




 

 
 

55.3tan

54.31

53.3

52.3tan

1
1

1

1













yy

y
xd

yd

xBd

yBd

Bxd

Byd

dx

dy
y

y
dx

dy
Now
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From Eqn 3.51, we get  

  

 

     57.31cos

56.3

tantancos

1

0

1

0

1

0

1

0

11













xdHydxycyHQ

xdHy

xdcbHQ

x

x

x

x

x

x

x

x





Now 
B

Hcos  fig. 3.1 and fig. 3.2 and from equation 3.37 
B

HH   

58.3cos  H  

 

Substitute equation 3.58 into 3.57 thus  

     59.31
1

0

1

0

112

  dxHydxycyHQ

x

x

x

x

  

Now, further treatment of equation 3.39, 3.40 and 3.41 results in the following:  

62.32ˆ

61.3ˆ

60.3ˆ







HQQ

H

Hcc

  

Substituting  therefore equations 3.60, 3.61 and 3.62 into equation 3.59, we have  

         63.3ˆ1ˆ
1

0

1

0
2

11

 




xdHydxyHcyH

x

x

x

xH

Q 

 

Further expanding, we get  

    

   65.3ˆ1ˆ

64.3ˆ1ˆ

11

112

1

0

1

0

1

0









dxHyHycy

xdHyxdHycyHQ

x

x

x

x

x

x




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  

   67.3ˆˆ

66.3ˆ1ˆ

11

1

1

0

1

0

1

0









xdycxdyyH

dxyycy

x

x

x

x

x

x





   68.3ˆ1ˆ 11
1

0

1

0

  xdycxdyy

x

x

x

x

  

By invoking the result of equation 3.28, equation 3.68 becomes  

   69.31 12
1

0

  xdyyHQ

x

x

  

(b) For equation 3.16, we have  

   0coscossin
1

0

 dsc

x

x

  

Introducing the non-dimensional parameters of equations 3.44 and 3.46, we obtain  


1

0

x

x

σ ૪   cB   cossin ૪ cosB 70.30
cos




Bdx
 

૪    71.30
cos

coscossin
1

0

2  


xd
cB

x

x

 

૪    72.30tan
1

0

2  xdcB

x

x

  

Dividing although by ૪B
2
, we get  

   73.30tan
1

0

 xdc

x

x

  

Introducing equations 3.60 and 3.61 into 3.73, we get  
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      

      

 

   77.30ˆ

76.30ˆ

75.30ˆ

74.30ˆtan

11

11

1

1

0

1

0

1

0

1

0

















dxcyHy

xdHcHyHy

xdHcyH

xdHcH

x

x

x

x

x

x

x

x









  

   79.30ˆ

78.30ˆ

11

11

1

0

1

0

1

0

1

0









xdyHxdcy

dxyHdxcy

x

x

x

x

x

x

x

x





 

Invoking the result of equation 3.28, the equation 3.79 simplifies to  

   80.30ˆ1
1

0

 xdcy

x

x

  

(c) For equation 3.20, we have  

      xcyCosc
s

 sinsincossincos   


1

0

x

x

ds ૪   0 dxHyx   

Introducing the non-dimensional parameters of equations 3.44 and 3.46 into 3.20 gives 

us:  

૪         xdxcycB

x

x

 tantan1tan
1

0

2  

૪   81.30
1

0

2  xdHyxB

x

x

 

By using equations 3.43 and 3.44 and making necessary substitutions;  

૪        xBdxycyycyB

x

x

1112 1
1

0

 ψσψσ  
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+ ૪   82.30
1

0

2  xBdHyxB

x

x

 

Dividing although by rB
2
, we have  

      

  83.30

1

1

0

1

0

111









xdHyx

dxxycyycy

x

x

x

x



 

Introducing the results of equation 3.46 into equation 3.83 gives 

            

  84.30

ˆ1ˆˆˆ

1

0

1

0

111









xdHyxxd

xyHcyHyHcyH

x

x

x

x





 

Simplifying  

    

  85.30

ˆˆˆˆˆˆ

1

0

1

0

1111









xdxHyx

xdxycxyyxxycyyHyyy

x

x

x

x



 

   

          87.30ˆˆ

86.30}ˆˆˆ

1111

11

1

0

1

0









xdyHxyyxycyyxyxy

xdyxxHxHyyHyxycyyxyxy

togethertermslikeTaking

x

x

x

x





But the result of equation 3.33  

01
1

0

 xdyy

x

x

 

and so equation 3.56 becomes 

        88.30ˆˆ 111

1

0

 xdyxyxycyyxyxy

x

x

  
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 The basic five parameters of the problem (c,  , ૪, H, B) enter into the system 

of equations represented by 3.69, 3.80 and 3.88 in the combination of ψ and c only. 

Thus the transformation into non-dimensional parameters has effectively and 

advantageously reduced the number of problem parameters from five to two. 

 

Construction of Euler-Lagrangian Intermediate Function for the Problem  

 Consider the stability function of equation 3.69 given as  

   89.31ˆ 12
1

0

  dxyyHQ

x

x

  

Denote the integrand by U which is now a function of σ, y, y
1
, and c. This implies that 

    90.31ˆ,,,, 11  yyCyyU  and  

 

)coscos(

91.3ˆ,,,,ˆ

22

12

1

0







 

HHbut

xdcyyUHQ

x

x
 

For the stability function of equation 3.80 representing the horizontal equilibrium state, 

the equation is  

   0ˆˆ 1
1

0

 xdcy

x

x

  

the integrand is denoted by V, then V which is now a function of σ, y
1
, ψ, and c 

becomes  

 

 

 

Similarly, denote by W, the integrand of the stability function representing the moment 

equilibrium and given in equation 3.88 as  

        0ˆˆ 111
1

0

 xdyxyxycyyxyxy

x

x

  

Obviously W is a function of σ, xandcyy ˆ,,, 1   and so  

   

  93.30ˆ,,,

92.3ˆˆ,,,

1

11

1

0





 xdcyVand

cycyV

x

x




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         

  95.30ˆ,,,,,ˆ

94.3ˆˆˆ,,,,,ˆ

1

1111

1

0





 cxyyW

yxyxycyyxyxycxyyW

x

x





 The solution of the foregoing variational problem will now be constructed using 

the method of Lagrange’s immediate multipliers. In line with this is defined an 

intermediate function S (Swokowski, 1991; Elsgolts, 1977).  

96.321  WVUS   

which is seen to incorporate the load function U and the necessary constraints V and W. 

,, 21   are Lagrange’s undetermined multipliers. Replacing U, V, and W with their 

appropriate expressions from equations 3.90, 3.92 and 3.94, we have  

     
      97.3ˆˆ

ˆˆ1ˆ
111

2

1
1

1





yxyxycyyxyxy

cyyyS





 

 The equation 3.97 for s integrates the load (objective) function with the 

constraints. It is the functional which itself is a function of two functions )(xy , the 

rupture surface and )(ˆ x , the normal stress distribution on the rupture surface.  

In the subsequent section, S is immunized with respect to the functions )(xy  

and )(ˆ x  by subjection to the appropriately constructed Euler-Lagrange’s differential 

equation. The determination of the expressions for the critical normal stress distribution 

)(ˆ x  and the critical rupture surface )(xy  and which ultimately results from the 

minimization of S thus the main thrust of the bearing capacity problem.  

 

Formulation of Euler-Lagrange Differential Equation  

 The criticals )(ˆ x  and )(xy  must necessarily satisfy  

(a) system of Euler differential equation in S  

(b) the integral constraints of equations 3.80 and 3.88 

(c) the set of boundary conditions at the end points 10 xandx  

For the differential equation, Euler had theorized that for a functional of one function 

)]([ xy  
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  98.3...,,,,)( 1
1

0

  dxyyyyFyJ n

x

x

 

The appropriate differential equation is (Swokowski, 1991; Elsgolts, 1977) 

n

n

n

n

n
n

y

F
Fy

y

F
Fy

y

F
Fywhen

Fy
dx

d
yF

dx

d
Fy

dx

d
Fy
































100.3

99.30)1(

1

1

2

2
1

 

Thus the Euler differential equation of equation 3.99 becomes  

101.30)1(
2

2

1
















































nn

n
n

y

F

dx

d

y

F

dx

d

y

F

dx

d

y

F

 

In the same light, for a functional of two functions y(x) and z(x),  

   

isequationaldifferentiEulerofsystemtheand

dxzyzyzyzyxFxxyJ nn

x

x

102.3,,,,,,,,,)(),( 11

1

0

   

103.30)1(

0)1(

2

2

1

2

2

1

























































































nn

n
n

nn

n
n

y

F

dx

d

z

F

dx

d

z

F

dx

d

z

F

y

F

dx

d

y

F

dx

d

y

F

dx

d

y

F

 

 For the particular case of the formulated problem, we have that the functional S 

is a function of two variables incorporating first order differential. The appropriate 

Euler’s differential equation for the present problem may therefore be written as  

105.30

104.30
ˆˆ

1

1





































y

s

dx

d

y

s

s

dx

ds


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further, bringing the condition of transversality, i.e., the variational boundary condition 

of equation 3.34  

0
ˆ

ˆ

1

1

1

1

1 










 xx

s

y

s
yS


  

Now since S in equation 3.97 does not depend on ̂ , then equation S 3.104, 3.105 and 

3.34 simplify to  
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Thus the problem reduces to that of solving the two differential equations, Equations 

3.106 and 3.107, subject to the fulfillment of the two integral constraints Equation 3.80 

and 3.88, the geometrical boundary conditions, equations 3.22 and 3.23 and 

transversality condition equation 3.108.  

 

Co-ordinate Transformation and General Solution  

Co-ordinate Transformation  

 From equation 3.97, we discover that S is linear in σ, and so equation 3.106 is 

independent in σ, and is a first order differential equation in y only. It is solved 

independent of Euler’s second equation 3.107. The solution which is found elsewhere 

(Ike, 1979; Michael and Raphael, 1977) results into an expression for the critical 

rupture surface which is found to be logarithmic spiral curve.  

 Following a rigorous process and using polar coordinate system, the expression 

for the critical normal stress distribution σ(x) is obtained by a complete solution of 

equation 3.103. It is found convenient to introduce the following coordinate 

transformation.  
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when (r, θ) is a polar coordinate system centered around the point (xr, yr): 

 
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Now y (eq 3.110) is a function of two variables r  and θ. So we use product rule thus:  
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(Note that λ1 and λ2 are constants and so result to zero on differentiation).  

 Thus, by introducing the results of equations 3.115 and 3.116 into equation 

3.113,  


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and introducing equation 3.116 into 3.118 takes us to  
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 The solution of the Euler first differential equation has already been dealt with. 

The result was obtained by introducing the definition of S (equation 3.97) into the 

Eulers first differential equation, Equation 3.106 and using the coordinate 

transformation equations 3.109, 3.110 and 3.117. A resulting first order differential 

equation  

121.3.)(

120.3
1

)(

0
0 
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 




err

obtaintorforsolvedwas

d

rd

r

 

in which (ro, θo) are the constants of integration that may be conveniently taken as polar 

coordinate of point (ro, yo).   

 The above equation, equation 3.121 is identified as the equation of a logarithmic 

spiral curve and which is the shape of the critical rupture surface. To solve the Euler 

second equation to obtain the normal stress distribution )(ˆ x  on the critical rupture 

surface, we introduce the definition of S in the Euler’s second equation, Equation 

3.107, thus: 

Recall  
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But Euler’s second equation is recalled thus  
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Substituting equations 3.123 and 3.126 into 3.107 results into:  
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Simplifying  
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Transforming polar-coordinate – wise by introducing the expressions for y and x from 

equations 3.109 and 3.110, we have  
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Introducing the expression for 
d

dx
 from equation 3.116 into equation 3.136, we obtain  
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From equation 3.120, we see that  
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Introduce equation 3.138 into equation 3.137 thus  
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substituting the expression for r(θ), equation 3.121 into 3.141 results to  
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Rearranging equation 3.143, thus  
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We can clearly see that it is a first order linear differential equation in ̂ . This is solved 

by procedure of separation of variables.  

 

Solution of the Resulting Differential Equation  

 If we rearrange the differential equation, equation 3.144, we get  
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Equation 3.145 is a first order linear non-homogeneous differential equation and which 

we solve by separating the variable thus [29]  
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substituting Equations 3.146, 3.147 and 3.148 into equation 3.149 takes us:  
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(see Appendix A) 

substituting equation 3.156 into 3.155 gives  
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codifying and rearranging, we get  
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B = integrating constant.  

Now for a case where ψ = tan   = 0; i.e., frictionless soil, we substitute this zero value 

into equation 3.153 before performing the integration thus:  
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Solution of Transversality condition (Variational Boundary Condition) 

The expression of the variational boundary condition is given in equation 3.108 as  
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Further simplification yields  
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 Introduce into equation 3.166, the expressions for the coordinate transformation 

of x and y from equation 3.109 and 3.110, we get.  
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Simplifying  
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Dividing although by rλ2 cos θ 
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Determination of Integration Constant (B) 

 The integration constant B of equation 3.162 is determined by pursuing the fact 

that the critical )(ˆ x determined from the solution of the Euler equation, Equation 

3.107 must also satisfy the condition of transversality (i.e. the variational boundary 

condition), Equation 3.107 at any point on the critical rupture surface. This realized, we 

therefore apply the solution of )(ˆ x  equations 3.159 and 3.161 (for ψ = 0, and ψ ≠ 0 

respectively) to the end point (r1, θ1) and on comparing the result with the solution, 

equation 3.175, for the variational boundary condition, we can solve for B, thus: 

 Now, the solution for the Euler second equation is  
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B = integration constant  

Now if )(ˆ x  on equations 3.159 and 3.162 is applied to the end condition, we obtain  
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 If these are simultaneously compared with the )(ˆ
1 Equation 3.175 resulting 

from the solution of the transversality condition, we get as follows: 
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similarly for the case where ψ = 0; we have  
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In determining the critical normal stress distribution according to the variational 

solution of equation 3.159 and 3.163 for 0̂ and supporting equations, equations 3.160 

for A and 3.180 and 3.184 for B, it is necessary to define the ranges of validity of the 

angle  , defining the polar coordinate system.  
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 If we express the geometrical boundary condition of equations 3.22 and 3.23 in 

terms of polar coordinates by introducing equations 3.111 and 3.110 and then the 

results into equations 3.22 and 3.23, we obtain the following expressions:  
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Introducing Equations 3.111 and 3.112 respectively into equations 3.109 and 3.110 

gives  
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Introducing equations 3.185 and 3.186 into equations 3.22 and 3.23 gives  
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From equations 3.187 and 3.188 rearranged,  
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Equation 3.192 shows that the relation between 1  and 0 is of the form  
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This function is only positive is the range  

194.30 10   and  

except θ = 1 ,  , in which 0)()0()( 1   fff  
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The function also reaches maximum value at  .2  . The range of 0 , 1  are 

therefore:  
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Based on the foregoing, the following ranges of θ are calculated for various values of   

(internal frictional angle).  

Table 1: Computed values of 10  and  

0  
020 :     

211 0:  

0 
02   210   

5  048.1   48.10 1   

10  0396.1   39.10 1   

15  031.1   31.10 1   

20  022.1   22.10 1   

25  013.1   13.10 1   

30  0047.1   047.10 1   

35  096.0   96.00 1   

40  0872.0   872.00 1   

45  07854.0   7854.00 1   

 

 Precise values for θ0 and θ1 are obtained for various   values by choosing θ0 

within the range tabulated and using equation 3.192 modified by the satisfaction of 

equation 3.194, the corresponding θ1 value is obtained.  

 It is convenient to take r0 to equal the foundation width; i.e. r0 = B. For a 

foundation of total width 2.40m, r0 = 2.40m. It must be pointed out that the radius r0 

that defines the point (r0, θ0) of the polar coordinates of the point (x0, y0) would vary 

with the cohesive strength for various soils. Consequently, from equation 3.8.13,  

  0

0


 err  

the shape of the critical surface r(θ) depends on both c and   also. This result is 

different from that of the classical solutions in which the shape of the critical rupture 

surface is independent of cohesion.  
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CONCLUSION 

 

A cursory equation for the computation of the critical normal stress distribution on the 

rupture surface from determinable strength parameters of the soil is also evolved. Since 

the analysis here admits the logarithmic spiral curve for the critical rupture surface, the 

magnitude of the normal stress distribution on the surface is rightly observed to vary 

with position on the curve.  

 This result is evidently an improvement over the normal stress equation 

suggested by De Beer [31] and given by    
   

whichin

qq φσ sin13
4

1
00 

 

2
1

0  qNqcNcq ૪BN૪ and q  =  ૪H  

valueconstantatoσlimitswhichand 0 . 

 

APPENDIX A  

Perform the integration 


θθ
ψθ de cos3  

The above integration is carried out by parts.  

Let )1(cos,3    ddveu  

 



 

















)5(

)4(cos

)3(sincos

)2(3

3

3

3

3

vdvuvudvBut

udvdeNow

ddvv

dedu

e
d

du
















 

Substituting  

     )6(sin3sinsin3sin 3333   deedeeudv

 integrating again the cycle function  
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 

















)7(cos3cossin

cos;3

sin

:sin

333

3

3

3

















deede

vedu

ddveuLet

de

 

Substitute (7) into (6), then  

 

   

  )9(cos3sin
91

cos

cos3sincos3sincos91

cos9cos3sin

)8(cos3cos3sincos

2

3
3

33332

3233

3333





























θψθ
ψ

θθ

θψθθψθθθψ

θθψθψθ

θθψθψθθθ

ψθ
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