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ABSTRACT

In this study, accurate and efficient numerical methods with good stability
properties shall be developed. The formulation of the block second derivative
Blended Linear Multistep methods for step numbers k=7 is considered. The
main methods are derived by blending of two methods by continuous
collocation approach. These methods are of uniform order eight. With this
approach, we hope to improve the stability regions of the Adams Moultons
Methods with step number k=7 and thereby making them suitable for the
solution of stiff ordinary differential equations. The new methods proposed
in this paper turn out to be A-stable. Numerical examples obtained
demonstrate the accuracy and efficiency of the new Blended Block Linear
Multistep Methods.
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INTRODUCTION

Most real life problems when modelled mathematically result in ordinary differential
equations. Some of the equations do not have analytic solutions as such the need for
good numerical methods to approximate their solutions. In this paper we are concern
with the numerical solution of the stiff initial value problem (1) using the second derivative
linear multistep.
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is continuous and differentiable.

The second derivative k-step method takes the following form
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Where jjj gandb,a
 
are parameters to be determined and .

jnjn fg ++ =
.

Several methods have been developed to overcome this barrier theorem.
Researchers like Gear (1965), Butchers (1966), Lambert (1973), the second derivative
methods of Enright (1974), Genin (1974), Gamal and Iman (1998), Sahi, Jator and
Khan (2012), Mehdizadeh, Nasehi and Hojjati (2012), Ehigie and Okunuga (2014)
and the third derivative method of Ezzeddine and Hojjati (2012), Chollom and Omagwu
(2016), either relax the condition to obtain A stable methods or incorporate off-step
points to improve the stability of the methods.

In this work, we consider the second derivative hybrid explicit generalized
Adams methods for step numbers k=7. With this approach, we hope to improve the
stability regions of the Adams Moulons Methods and thereby making them suitable for
the solution of (1).

Formulation of the Method

Let m = 8 in (2) produces the general form of the Blended Block Linear Multistep
method for k=7 as:
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The above continuous formulation (5 is then evaluated at the following points
 to give the following seven discrete schemes which are

used simultaneously for the solution of (1) constitute the block method.
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Stability Analysis of the methods (Ehigie and Okunugha 2014):

The seven step method has order   and error constant of

Zero-stability of the Block Methods

Following the work of Ehigie and Okunuga (2014), we observed that the seven step
block method is zero stable as the roots of the equation

 

 are less than or equal to 1. Since the block method

is consistent and zero-stable, the method is convergent (Henrici 1962).

Region of Absolute Stability

Solving the characteristic equation 
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Numerical Experiments

Problem 5.1 Stiff Linear System21′ ! 99821 ) 199822  22′ ! 699921 6 199922 21&0* ! 1,22&0* ! 1 

Problem 5.2  Van der pol’s Equations

21′ ! 22		 22′ ! 621 6 =22&1 6 212* = ! 40,21&0* ! 2,22&0* ! 0   

0 40,   0 1x h .≤ ≤ =

The Van der Pol’s Equation is an important kind of second-order non-linear auto-
oscillatory equation. It is a non-conservative oscillator with non-linear damping.

Figure 1: Region of Absolute Stability of the BBLMM for K=7
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Solution Curve For Problem 5.1

Solution Curve For Problem 5.2

CONCLUSION

New blended block second derivative linear multistep methods have been constructed
through the multistep collocation approach for the solution of stiff systems. The analysis
of the stability properties shows that the methods are all A-stable and convergent.
Numerical experiments reveal from the solution curves that the efficiency and accuracy
of the newly constructed Blended Block Linear multistep methods compete favourably
with the variable step size ODE 15s for solving IVPS of Ordinary Differential Equations.
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