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ABSTRACT
A presentation of the sinc method to Volterra-Fredholm integral equations
of the second kind is being considered in this paper. A single exponential
transformation that relates the real line ”! and a finite arc G is used in
conjunction with the sinc method to convert the Volterra-Fredholm
integral equations of the second kind to algebraic equations. The
deviation of the approximate solution obtained from the exact solution
is measured in terms of the maximum absolute error between them at sinc
points. The exceptional accuracy of the method is illustrated with
numerical examples.
Keywords: Sinc function, Collocation method, Volterra-Fredholm
integral equations

INTRODUCTION

Numerical approximation of solutions based on sinc method is among recent tools
used in the estimation of solutions of differential and integral equations. This approach
has enjoyed valuable contribution from several authors as can be seen in Carlson et
al (1997), Rashidinia and Zerebnia (2008), Mohammad et al (2005). Usually
incorporated with the sinc method is the variable transformation that relates ”! with
a finite arc  G. In this paper, we extend the existing procedures based on sinc
methods to integral equations of the second kind, in the form of

( ) ( ) ( ) ( ) ( ) ( ) ( )1,,,
21

bxaxgdttutxkdttutxkxu
b

a

x

a
≥≤+∫+∫=

which is called Volterra-Fredholm integral equations, Pachpatte (2008). Here k
1
,

k
2
 and  are given smooth functions and  is the solution to be determined. This

type of equations arise from parabolic boundary value problems from the
mathematical modelling of the spatio-temporal development of an epidemic and
other physical and biological models, Wazwaz (2011). The existence of the solution
for the equations of this type has been given by Andras (2003) on the basis of fibre-
Picard theorem. We derive the collocation formula for (1) using sinc method based
on the variable transform which is then applied to numerical example to test its
efficiency. For this purpose, we shall give the following definitions;
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Basic Definitions and Theorems
The finite term sinc series is expressed as
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where the basis function S(j,h)(t)   called the sinc function is defined as
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and the step size  depends on a positive integer .

Definition 2.1

Let  be a bounded and simply connected domain, then ( )DH ∞  denote the

family of functions ( )DHolf ∈ such that
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where
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Definition 2.2
Let D be a bounded and simply connected domain, then ( )DHC  denote the family

of all functions, ( ) ( )DHolDLipf ∩∈
_

α
 such that
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Using the above definitions 2.2 and 2.3, we give descriptions of two important sinc
spaces of approximations.

Definition 2.3
Let 0>a  be a constant, then ( )DL

α
 denote family of functions ( )DHf ∞∈  for which

there exists a constant K such that for all Dz∈
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where the function Q is defined by  ( ) ( )( )zbazzQ −−=

The variable transform
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The mapping is such that  and  with the sinc points
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Given a constant 0>d , we define { }dzimCzD
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to denote a strip region of width 2d, when incorporated with (4), this definition
should be considered on the translated domain
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Corresponding to sinc function (3) and variable transform (7), we state in the
following theorem a convergence result similar to that given by Okayama et al
(2010).

Theorem 2.1
Let ( )( )

d
DLf σ

α
∈  with π<< d0  let N be a positive integer, and h be selected by

the formula ( )10
N

d

α
π

Then there exists a constant C which is independent of , such that
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Definition 2.4
Let ( )1,0∈α  and D is such that ( ) Dba ⊂, , then ( )DM

α
 denotes the class of functions

( )DHCf ∈  which have finite limits at endpoints ( )af   and  ( )bf  of ( )ba,  such that

if  ( ) ( )( )xx 1exp −= σρ
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Let ρ  be defined as
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The translated function
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belongs to ( ) ( )DMgifDL
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then by equation (2) the sinc approximation can be applied to the function Tg as
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By (14), we can express ( )xg  as
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and by (15) the sinc approximation of g(x) is
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which may be written as

[ ]( ) ( ) [ ]( ) ( ) ( ) ( )( ) ( ) ( ) ( )17}{, 1 xwbgxhjSjhxgTwagxgP
b

N

Nj
aN

+∑+= −

−= σσ

where w
a
 and w

b
 are auxiliary basis functions defined by
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By Theorem 2.1 the convergence theorem for (17) may be stated thus:

Theorem 3.1
Let ( )( )

d
DMg σ

α
∈  with π<< d0 , let N be a positive integer and let h be selected

by the formula (10). Then there exists a constant C which is independent of, such
that
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 be the exact and approximate solution of (1), while
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then by (17)
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will satisfy (1) at sinc points (8), since it is a linear combination of the sinc functions
( )( )thjS ,  and the auxiliary basis functions ( )xw

a
 and ( )xw

b
. Here, the basis functions

are considered to be fixed and the collocation points defined as
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With the collocation points defined as above, we set the approximate solution
of (1) as
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Following Stenger (1993) and Haber (1993) and using (21) we approximate the
integrals in (1) as follows;
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and ( )xσ ′  is the derivative of  defined at sinc points as
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using (22) to (26) in (1), we obtain the collocation formula as
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(29) represents a ( ) ( )32*32 ++ NN  system of linear equations, which can be
expressed more compactly as
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By solving the above system of equations for  and using the result in (21), we obtain
the approximate solution ( )xu

N
 to (1).

NUMERICAL EXAMPLES
For these examples, we will find the approximate result and compute the
maximum error in order to determine the accuracy of the method.

Example 1
In this example we consider equation (1) with

( ) ( ) ( ) 10,222,,,,
21

≤≤+−−==−= xexxgxtxktxtxk x

This problem was considered by Wazwaz (2011), using method based on series
solution.
The exact solution is given as ( ) xxexu =
The results for Example 1 are illustrated on Table 1, Figure 1 and Figure 2 respectively.
Example 2
In this example we consider equation (1) with
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1

3

1
4

12

1
2

21
≤≤−−−=+=−= xxxxxgtxtxktxtxk

This problem was considered by Wazwaz (2011), using method based on modified
Adomian decomposition.
The exact solution is given as ( ) .2xxu =
The results for Example 2 are illustrated on Table 2, Figure 3 and Figure 4 respectively.

The collocation formula described in section 3 is implemented with 1=a  and 
2

π=d

so that 
N

h
2

π= . The computations are carried out using MATLAB®, and the

maximum absolute error ( )( )σhE
N

 measures the largest error at the sinc points in

the approximation for any chosen N. It is defined by
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Where u  and u
N
  are the exact and approximate solutions of (1), respectively.

The approximate solution in Figure 1 a maximum deviation of 4.3 x 10-3
from exact solution appears at x = 0.9964 and remains consistent as x increases
towards 1 for N = 10. Figure 2 shows the rapid decrease in the maximum absolute
error with the increasing value of N, which is in agreement with information from
Table 1. Similarly, in Figure 3, we have a maximum absolute error of 7.2 x 10-6 at
x = 0.9927 and also remaining consistent as x increases towards 1 for N = 10 and
Figure 4 agrees with error decay pattern illustrated on table 2.
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CONCLUSION

The numerical result of the examples presented in this work indicates exceptional
accuracy of the method implemented. The deviations of the approximate solution
from the exact solution as illustrated in Figures 1 and 3 verify our claim. Also,
Figures 2 and 4 and Tables 1 and 2 justify increase accuracy of the results for
increase in N number of evaluations. A theoretical convergence analysis of the
method for equations of this type can give a clearer picture of the error bounds. We
intend to discuss this in our subsequent work.

Table  1:   Example 1

         N                                  h                           ( )( )σhE
N

        10                             0.7025                        4.300 x 10-3

        20                             0.4967                        2.6161 x 10-4

        30                             0.4056                        2.9463 x 10-5

        40                             0.3512                        4.6573 x 10-6

        50                             0.3142                        8.9677 x 10-7

        60                             0.2868                        2.0315 x  10-7

Table  2:                 Example 2

         N                                  h           ( )( )σhE
N

        10                             0.7025                        7.200 x 10-3

        20                             0.4967                        4.3727 x 10-4

        30                             0.4056                        4.9225 x 10-5

        40                             0.3512                        7.7134 x 10-6

        50                             0.3142                        1.4981 x 10-6

        60                             0.2868                        3.3936 x 10-7
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Figure 1: Exact solution and Approximate solution for Example 1
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Figure 2: Maximum absolute error for Example 1
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Figure 3: Exact solution and approximate solution for Example 2
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Figure 4: Maximum absolute error for Example 2
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